Dear Author

Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
- Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:

```
http://dx.doi.org/10.1007/s11040-011-9092-4
```

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information, go to:
http://www.springerlink.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us, if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

1	Article Title	The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations	
2	Article Sub- Title		
3	Article Copyright - Year	Springer Science+Business Media B.V. 2011 (This will be the copyright line in the final PDF)	
4	Journal Name	Mathematical Physics, Analysis and Geometry	
5	Corresponding Author	Family Name	Qiao
6		Particle	
7		Given Name	Zhijun
8		Suffix	
9		Organization	University of Texas-Pan American
10		Division	Department of Mathematics
11		Address	Edinburg 78539, TX, USA
12		e-mail	qiao@utpa.edu
13	Author	Family Name	Chen
14		Particle	
15		Given Name	Jinbing
16		Suffix	
17		Organization	Southeast University
18		Division	Department of Mathematics
19		Address	Nanjing 210096, Jiangsu, People's Republic of China
20		e-mail	cjb@seu.edu.cn
21	Schedule	Received	17 May 2009
22		Revised	
23		Accepted	3 March 2011
24	Abstract	A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebrogeometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.	
25	Keywords separated by ' - '	Integrable equations - Neumann type systems - Algebro-geometric solutions -37K10-37J35-70H06	
26	Foot note information		

The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations

Jinbing Chen • Zhijun Qiao

Received: 17 May 2009 / Accepted: 3 March 2011
© Springer Science+Business Media B.V. 2011

Abstract

A system of (1+1)-dimensional coupled integrable equations is de- 1 composed into a pair of new Neumann type systems that separate the spatial 2 and temporal variables for this system over a symplectic submanifold. Then, 3 the Neumann type flows associated with the coupled integrable equations are 4 integrated on the complex tour of a Riemann surface. Finally, the algebro- 5 geometric solutions expressed by Riemann theta functions of the system of 6 coupled integrable equations are obtained by means of the Jacobi inversion.7

Keywords Integrable equations • Neumann type systems • 8
Algebro-geometric solutions 9
Mathematics Subject Classifications (2010) 37K10 • 37J35 • 70H06 10
1 Introduction 11

The Neumann system of harmonic oscillator constrained on the unit sphere is a 12 prototype of finite dimensional integrable system (FDIS) with rich mathemati- 13 cal natures in the area of classical mechanics [22]. Based on the Flaschka's idea, 14 Moser's, Veselov's and Knoerrer's work [14, 19, 23, 24, 35], a number of new 15

[^0]FDISs of both Neumann and Bargmann types were found under a symmetric constraint between spectral potentials and eigenfunctions in the framework of the nonlinearization of Lax pair [4, 5]. The FDISs of Bargmann type are the canonical Hamiltonian systems produced under a Bargmann constraint from the Lax pair of an integrable equation; while the FDISs of Neumann type are generated under a Neumann constraint on the symplectic submanifold $[6,9,11,27,28,33,37,38]$. Those resultant FDISs not only enrich the content of integrable systems itself, but also pave an effective way to solve integrable equations via the separation of spatial and temporal variables. It is already noticed that finite dimensional integrable Hamiltonian systems have been used to get algebro-geometric solutions through the finite parametric (or involutive) solutions of integrable equations with the help of the theory of algebraic curves $[1,7,16,17,28,30,31,36,37]$. In particular, a Neumann type system was already applied by Qiao to obtain the algebro-geometric solution of the Camassa-Holm (CH) equation on a symplectic submanifold [33], where the Lax matrix, dynamical r-matrix and Jacobi inversion were involved in.

To understand deeply the physical applications of integrable dynamical systems, one has to derive all kinds of explicit solutions for nonlinear evolution equations from different standpoints. After the breakthrough discovery of inverse scattering transformation [15], many interesting explicit solutions have been found, including the classical soliton solutions, the algebro-geometric (or finite-gap, quasi-periodic) solutions, and the polar expansion solutions. One can easily see that all explicit solutions of physical interests have a finite number of parameters. A deeper insight indicates that they may satisfy certain solvable ordinary differential equations and can be obtained through tackling the associated FDISs, which are reduced from integrable equations. Apart from the fruitful application of finite dimensional integrable Hamiltonian systems $[1,7,16,17,28,30,31,36,37]$ and the work of the CH Neumann system with algebro-geometric solution [33], we also found that the Neumann type flow is in essential the Hamiltonian flow in the sense of Dirac-Poisson bracket over a symplectic submanifold, and the Neumann constraint under the scheme of nonlinearization of Lax pair directly cast in a finite dimensional invariant submanifold in quite a few cases [11, 28, 33]. In particular, the generating function of integrals of motion of Neumann type system determines a Riemann surface of hyperelliptic curve that pave a bridge to construct AbelJacobi (or angel) variables for integrable equations [12, 33]. Following the above-mentioned analysis, in this paper we present a distinct way by using the Neumann type systems to derive new algebro-geometric solutions for more integrable equations of physical and mathematical interests.

To illustrate our scheme, we study the algebro-geometric solutions of the following (1+1)-dimensional nonlinear evolution equations [34]

$$
\left\{\begin{align*}
u_{t} & =v^{-2} v_{x} v_{x x}-v^{-1} v_{x x x}-2 u u_{x}-4 v v_{x}, \tag{1}\\
v_{t} & =-2 u v_{x}-u_{x} v
\end{align*}\right.
$$

In fact, the system (1) is the coupled integrable equations from the TD hierarchy, which allows the zero-curvature representation in the sense of Lax
compatibility [20], the Hamiltonian structure in view of the trace identity [34], 59 and the one- and two-soliton solutions by the Darboux transformation [10]. In 60 the following, we will provide a feasible relation between two Neumann type 61 systems stemmed from the Lax pair of (1) and algebro-geometric solutions 62 of the integrable system (1). To see this, the integrable system (1) is reduced 63 to two FDISs of Neumann type, whose compatible solutions yield solutions 64 of (1) through a direct algebraic operation [8]. An interesting thing is that two 65 Neumann type systems share the common Lax matrix and a dynamical r-matrix 66 structure in the Dirac-Poisson bracket [28, 32, 37, 39], instead of the standard 67 Poisson bracket since we construct Neumann type systems on a symplectic 68 submanifold.

The Lax matrix and the dynamical r-matrix guarantee that the two 70 Neumann type systems are completely integrable in the Liouville sense. Re- 71 ferring to the approach for getting algebro-geometric solutions for (1+1)- and 72 ($2+1$)-dimensional integrable equations $[3,7,16,17,21,28,30,31,36,37]$, two 73 sets of elliptic variables are singled out from the entries of Lax matrix, and 74 solutions of the integrable system (1) are expressed by the symmetric func- 75 tions with respect to these elliptic variables. Furthermore, through discussing 76 the Jacobi inversion, we attain the algebro-geometric solutions of integrable 77 system (1) in terms of Riemann theta functions.

78
The whole paper is organized as follows. In the next section, we decompose 79 the integrable system (1) into two FDISs of Neumann type. In Section 3, the 80 Neumann type flows are linearized/straightened out on the complex tour of a 81 Riemann surface, and in Section 4 we derive the algebro-geometric solutions 82 of integrable system (1) through the Jacobi inversion.

2 Decomposition of Integrable Equations

To describe our results, we first collect some necessary notations and formulas. 85
Let us begin with the spectral problem [34]

$$
\varphi_{x}=U \varphi, \quad U=\left(\begin{array}{cc}
-\frac{1}{2} \lambda+\frac{1}{2} u & -v \tag{2}\\
v & \frac{1}{2} \lambda-\frac{1}{2} u
\end{array}\right), \quad \varphi=\binom{\varphi_{1}}{\varphi_{2}}
$$

where λ is a spectral parameter, and u and v are two spectral potentials. In 87 order to derive the integrable hierarchy associated with (2), we define the 88 Lenard sequence $\left\{g_{j}\right\}(-1 \leqslant j \in \mathbb{Z})$ by

$$
\begin{equation*}
K g_{j-1}=J g_{j}, \quad J g_{-1}=0, \quad j \geqslant 0 \tag{3}
\end{equation*}
$$

with

$$
K=\left(\begin{array}{cc}
-\frac{1}{2} \partial v^{-1} \partial v^{-1} \partial-2 \partial & -\frac{1}{2} \partial v^{-1} u \tag{4}\\
-\frac{1}{2} u v^{-1} \partial & -\frac{1}{2} \partial
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & -\frac{1}{2} \partial v^{-1} \\
-\frac{1}{2} v^{-1} \partial & 0
\end{array}\right)
$$

91 where $\partial=\partial / \partial x$ and ∂^{-1} is the inverse of $\partial: \partial^{-1} \partial=\partial \partial^{-1}=1$. Noticing that the 92 kernel of J is of dimension 2 with two generators $g_{-1}=(0,2 v)^{T}$ and $g_{-2}=$ $93\left(\frac{1}{2}, 0\right)^{T}$, one can easily get

$$
\operatorname{ker} J=\left\{\varrho_{1} g_{-1}+\varrho_{2} g_{-2} \mid \forall \varrho_{1}, \varrho_{2} \in \mathbb{R}\right\}
$$

94 Each g_{j} can be determined by the recursion formula (3). In particular, we have

$$
\begin{equation*}
g_{0}=\left(v^{2}, 2 u v\right)^{T}, \quad g_{1}=\left(2 u v^{2}, 2 v_{x x}+2 u^{2} v+4 v^{3}\right)^{T} \tag{5}
\end{equation*}
$$

95 Let us consider an auxiliary spectral problem that is the time-dependent part 96 of (2)

$$
\varphi_{t_{n}}=V^{(n)} \varphi, \quad V^{(n)}=\left(\begin{array}{cc}
V_{11}^{(n)} & V_{12}^{(n)} \tag{6}\\
V_{21}^{(n)} & -V_{11}^{(n)}
\end{array}\right), \quad n \geqslant 1,
$$

97 where

$$
\begin{gathered}
V_{11}^{(n)}=-\frac{1}{4} v^{-1} \partial v^{-1} \partial g^{(1)}+\frac{1}{4}(\lambda-u) v^{-1} g^{(2)}, \quad V_{12}^{(n)}=-\frac{1}{2} v^{-1} \partial g^{(1)}+\frac{1}{2} g^{(2)} \\
V_{21}^{(n)}=-\frac{1}{2} v^{-1} \partial g^{(1)}-\frac{1}{2} g^{(2)}, \quad g=\left(g^{(1)}, g^{(2)}\right)^{T}=\sum_{j=0}^{n} g_{j-2} \lambda^{n-j}
\end{gathered}
$$

98 Then the compatibility condition of (2) and (6) gives the integrable hierarchy 99 [34]

$$
\begin{equation*}
(u, v)_{t_{n}}^{T}=J g_{n-1}, \quad n \geqslant 1 . \tag{7}
\end{equation*}
$$

100 Apparently, the first nontrivial member of (7) is the integrable system (1) with $101 t=t_{2}$, which is the compatibility condition of Lax pair (2) and

$$
\varphi_{t}=V^{(2)} \varphi, \quad V^{(2)}=\left(\begin{array}{cc}
\frac{1}{2} \lambda^{2}-\frac{1}{2} u^{2}-\frac{1}{2} v^{-1} v_{x x} & \lambda v-v_{x}+u v \tag{8}\\
-\lambda v-v_{x}-u v & -\frac{1}{2} \lambda^{2}+\frac{1}{2} u^{2}+\frac{1}{2} v^{-1} v_{x x}
\end{array}\right)
$$

102 In what follows, we want to decompose (1) into two Neumann type systems 103 on a symplectic submanifold. Let us consider N copies of the spectral problem 104 (2) with N distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$ and their corresponding eigen105 functions $\varphi=\left(p_{j}, q_{j}\right)^{T}$,

$$
\binom{p_{j}}{q_{j}}_{x}=\left(\begin{array}{cc}
-\frac{1}{2} \lambda_{j}+\frac{1}{2} u & -v \tag{9}\\
v & \frac{1}{2} \lambda_{j}-\frac{1}{2} u
\end{array}\right)\binom{p_{j}}{q_{j}}, \quad 1 \leqslant j \leqslant N
$$

106 One can readily calculate the functional gradient of each eigenvalue λ_{j} with 107 respect to the spectral potentials u and v [9]

$$
\begin{equation*}
\nabla \lambda_{j}=\left(\delta \lambda_{j} / \delta u, \delta \lambda_{j} / \delta v\right)^{T}=\left(p_{j} q_{j},-\left(p_{j}^{2}+q_{j}^{2}\right)\right)^{T} \tag{10}
\end{equation*}
$$

Taking into account the Neumann constraint [4, 5, 9]

$$
\begin{equation*}
g_{-1}=\sum_{j=1}^{N} \nabla \lambda_{j}, \tag{11}
\end{equation*}
$$

leads to

$$
\begin{align*}
& \langle p, q\rangle=0, \quad\langle p, p\rangle-\langle q, q\rangle=0 \\
& u=\frac{\langle\Lambda p, p\rangle+\langle\Lambda q, q\rangle}{\langle p, p\rangle+\langle q, q\rangle}=\frac{1}{2}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right), \\
& v=-\frac{\langle p, p\rangle+\langle q, q\rangle}{2}=-\langle p, p\rangle, \tag{12}
\end{align*}
$$

where $p=\left(p_{1}, \cdots, p_{N}\right)^{T}, q=\left(q_{1}, \cdots, q_{N}\right)^{T}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{N}\right)$, and $\langle\cdot, \cdot\rangle 110$ stands for the standard inner product in \mathbb{R}^{N}. In accordance with the rule of 111 the nonlinearization of Lax pair, substituting (12) into (9) gives rise to the first 112 nonlinear dynamical system of Neumann type,

$$
\left\{\begin{align*}
p_{x}= & -\frac{1}{2} \Lambda p+\frac{1}{4}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right) p+\langle p, p\rangle q \tag{13}\\
q_{x}= & \frac{1}{2} \Lambda q-\frac{1}{4}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right) q-\langle q, q\rangle p \\
& \langle p, q\rangle=0, \quad\langle p, p\rangle-\langle q, q\rangle=0
\end{align*}\right.
$$

On condition that the independent temporal variable t is regarded as the equivalence to the spatial variable x in the view point of mathematics, imposing the Neumann constraint (12) onto the time-dependent part (8) leads to another new Neumann type system

$$
\left\{\begin{array}{l}
p_{t}=\frac{1}{2} \Lambda^{2} p+\langle\Lambda p, q\rangle p-\frac{1}{4}\left(\frac{\left\langle\Lambda^{2} p, p\right\rangle}{\langle p, p\rangle}+\frac{\left\langle\Lambda^{2} q, q\right\rangle}{\langle q, q\rangle}\right) p-\langle p, p\rangle \Lambda q-\langle\Lambda p, p\rangle q \tag{14}\\
q_{t}=\langle q, q\rangle \Lambda p+\langle\Lambda q, q\rangle p-\frac{1}{2} \Lambda^{2} q-\langle\Lambda p, q\rangle q+\frac{1}{4}\left(\frac{\left\langle\Lambda^{2} p, p\right\rangle}{\langle p, p\rangle}+\frac{\left\langle\Lambda^{2} q, q\right\rangle}{\langle q, q\rangle}\right) q \\
\langle p, q\rangle=0, \quad\langle p, p\rangle-\langle q, q\rangle=0
\end{array}\right.
$$

A direct but lengthy computation yields the following proposition
Proposition 1 Let $(p(x, t), q(x, t))^{T}$ be the compatible solution of the two

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right), \quad v(x, t)=-\langle p, p\rangle \tag{15}
\end{equation*}
$$

are solutions of the integrable equations (1).

So, by this proposition, the integrable equations (1) can be solved with a finite parametric solution (15) through solving a pair of (finite dimensional) nonlinear dynamical systems of ordinary differential equations (13) and (14).

By using the procedure shown in $[9,28,31,32,37,39]$, we know that the Neumann type system (13) admits the Lax representation

$$
\begin{equation*}
L_{x}(\lambda)=[\bar{U}, L(\lambda)], \quad L_{x}(\lambda)=\partial L(\lambda) / \partial x \tag{16}
\end{equation*}
$$

127 where

$$
L(\lambda)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \tag{17}\\
0 & -\frac{1}{2}
\end{array}\right)+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}}\left(\begin{array}{cc}
q_{j} p_{j} & -p_{j}^{2} \\
q_{j}^{2} & -q_{j} p_{j}
\end{array}\right) \triangleq\left(\begin{array}{cc}
A(\lambda) & B(\lambda) \\
C(\lambda) & -A(\lambda)
\end{array}\right)
$$

128 and

$$
\bar{U}=\left(\begin{array}{cc}
-\frac{1}{2} \lambda+\frac{1}{4}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right) & \langle p, p\rangle \tag{18}\\
-\langle p, p\rangle & \frac{1}{2} \lambda-\frac{1}{4}\left(\frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}+\frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}\right)
\end{array}\right)
$$

129 Actually, the Lax matrix (17) was first discussed in [28, 32, 39] to classify 130 the FDISs. A very interesting fact is that the Neumann type system (14), 131 i.e. the nonlinearization of the time-dependent part (8) under the Neumann 132 constraint, admits the Lax representation with the same Lax matrix $L(\lambda)$ 133 defined by (17)

$$
\begin{equation*}
L_{t}(\lambda)=\left[\bar{V}^{(2)}, L(\lambda)\right], \quad L_{t}(\lambda)=\partial L(\lambda) / \partial t \tag{19}
\end{equation*}
$$

134 where

$$
\bar{V}^{(2)}=\left(\begin{array}{cc}
\bar{V}_{11}^{(2)} & -\lambda\langle p, p\rangle-\langle\Lambda p, p\rangle \tag{20}\\
\lambda\langle q, q\rangle+\langle\Lambda q, q\rangle & -\bar{V}_{11}^{(2)}
\end{array}\right),
$$

135 with

$$
\bar{V}_{11}^{(2)}=\frac{1}{2} \lambda^{2}+\langle\Lambda p, q\rangle-\frac{1}{4}\left(\frac{\left\langle\Lambda^{2} p, p\right\rangle}{\langle p, p\rangle}+\frac{\left\langle\Lambda^{2} q, q\right\rangle}{\langle q, q\rangle}\right) .
$$

136 The Neuamnn type systems (13) and (14) are completely integrable in the 137 Liouville sense since $L(\lambda)$ satisfies a dynamical r-matrix structure in the Dirac138 Poisson bracket [9, 32, 38, 39]. Consequently, this assures the compatibility of 139 the two Neumann type systems (13) and (14), which implies that the Neumann 140 type flows mutually commute [2].

1413 Straightening Out of the Neumann Type Flows

142 To get explicit solutions of integrable system (1), we adopt the procedure 143 of straightening out Neumann type flows that are restricted on a symplectic

AUTHOR'S PROOF

submanifold. To do this, we select two sets of elliptic variables $\mu_{1}, \mu_{2}, \cdots, 144$ μ_{N-1} and $\nu_{1}, \nu_{2}, \cdots, v_{N-1}$ from the entries of $L(\lambda)$,

$$
\begin{align*}
B(\lambda) & =-\sum_{j=1}^{N} \frac{p_{j}^{2}}{\lambda-\lambda_{j}}=-\langle p, p\rangle \frac{m(\lambda)}{a(\lambda)}, \\
C(\lambda) & =\sum_{j=1}^{N} \frac{q_{j}^{2}}{\lambda-\lambda_{j}}=\langle q, q\rangle \frac{n(\lambda)}{a(\lambda)}, \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
a(\lambda)=\prod_{k=1}^{N}\left(\lambda-\lambda_{k}\right), \quad m(\lambda)=\prod_{k=1}^{N-1}\left(\lambda-\mu_{k}\right), \quad n(\lambda)=\prod_{k=1}^{N-1}\left(\lambda-v_{k}\right) \tag{22}
\end{equation*}
$$

The combination of (21) and (22) gives

$$
\begin{align*}
& \frac{\langle\Lambda p, p\rangle}{\langle p, p\rangle}=\sum_{j=1}^{N} \lambda_{j}-\sum_{j=1}^{N-1} \mu_{j} \triangleq \sigma-\sigma_{1} \\
& \frac{\langle\Lambda q, q\rangle}{\langle q, q\rangle}=\sum_{j=1}^{N} \lambda_{j}-\sum_{j=1}^{N-1} v_{j} \triangleq \sigma-\sigma_{2} . \tag{23}
\end{align*}
$$

By (12) and (20), one obtains

$$
\begin{equation*}
u=\sigma-\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right), \quad \partial_{x} \ln v=\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right), \tag{24}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\bar{V}_{12}^{(2)}=-\langle p, p\rangle\left(\lambda+\sigma-\sigma_{1}\right), \tag{25}\\
\bar{V}_{21}^{(2)}=\langle q, q\rangle\left(\lambda+\sigma-\sigma_{2}\right) .
\end{array}\right.
$$

Define

$$
\begin{equation*}
\operatorname{det} L(\lambda)=-A(\lambda)^{2}-B(\lambda) C(\lambda)=-\frac{b(\lambda)}{4 a(\lambda)}=-\frac{R(\lambda)}{4 a^{2}(\lambda)}, \tag{26}
\end{equation*}
$$

where

$$
b(\lambda)=\prod_{k=1}^{N}\left(\lambda-\lambda_{N+k}\right), \quad R(\lambda)=a(\lambda) b(\lambda)=\prod_{k=1}^{2 N}\left(\lambda-\lambda_{k}\right) .
$$

It follows from (21), (22) and (26) that

$$
\begin{equation*}
A\left(\mu_{k}\right)=\frac{\sqrt{R\left(\mu_{k}\right)}}{2 a\left(\mu_{k}\right)}, \quad A\left(v_{k}\right)=\frac{\sqrt{R\left(v_{k}\right)}}{2 a\left(v_{k}\right)}, \quad 1 \leqslant k \leqslant N-1 \tag{27}
\end{equation*}
$$

153 By (21), (16) and (19), we arrive at the evolution equation of all μ_{k} and v_{k} 154 regarding x and t,

$$
\begin{equation*}
\frac{d \mu_{k}}{d x}=-\frac{\sqrt{R\left(\mu_{k}\right)}}{\prod_{i=1, i \neq k}^{N-1}\left(\mu_{k}-\mu_{i}\right)}, \quad \frac{d v_{k}}{d x}=\frac{\sqrt{R\left(v_{k}\right)}}{\prod_{i=1, i \neq k}^{N-1}\left(v_{k}-v_{i}\right)}, \quad 1 \leqslant k \leqslant N-1 \tag{28}
\end{equation*}
$$

155 and

$$
\begin{cases}\frac{d \mu_{k}}{d t}= & \frac{\left(\mu_{k}-\sigma_{1}+\sigma\right) \sqrt{R\left(\mu_{k}\right)}}{\prod_{i=1, i \neq k}^{N-1}\left(\mu_{k}-\mu_{i}\right)} \tag{29}\\ \frac{d v_{k}}{d t}= & \frac{\left(-v_{k}+\sigma_{2}-\sigma\right) \sqrt{R\left(v_{k}\right)}}{\prod_{i=1, i \neq k}^{N-1}\left(v_{k}-v_{i}\right)}\end{cases}
$$

156 These formulas naturally lead to the consideration of the Riemann surface Γ 157 of hyperelliptic curve given by the equation $\xi^{2}=R(\lambda)$, whose genus is $N-1$. 158 For the same λ, there exist two points $(\lambda, \sqrt{R(\lambda)})$ and $(\lambda,-\sqrt{R(\lambda)})$ on the 159 upper and lower sheets of Γ, and there are two points at infinity that are not the 160 branch points because $\operatorname{deg} R(\lambda)=2 N$. Under an alternative local coordinate $161 z=\lambda^{-1}$, they are marked as $\infty_{1}=(0,1)$ and $\infty_{2}=(0,-1)$.
162 Let $a_{1}, a_{2}, \cdots, a_{N-1} ; b_{1}, b_{2}, \cdots, b_{N-1}$ be a set of regular cycle paths on Γ, 163 which are automatically independent if they have the intersection numbers

$$
a_{i} \circ a_{j}=b_{i} \circ b_{j}=0, \quad a_{i} \circ b_{j}=\delta_{i j}, \quad i, j=1,2, \cdots, N-1 .
$$

164 It is well known that

$$
\tilde{\omega}_{l}=\frac{\lambda^{l-1} d \lambda}{\sqrt{R(\lambda)}}, \quad 1 \leqslant l \leqslant N-1
$$

165 are $N-1$ linearly independent holomorphic differentials of Γ. Let

$$
\begin{equation*}
A_{i j}=\int_{a_{j}} \tilde{\omega}_{i}, \quad C=\left(A_{i j}\right)^{-1}, \quad 1 \leqslant i, j \leqslant N-1 \tag{30}
\end{equation*}
$$

166 then $\tilde{\omega}_{l}$ can be normalized into a new basis ω_{j},

$$
\omega_{j}=\sum_{l=1}^{N-1} C_{j l} \tilde{\omega}_{l}, \quad \int_{a_{i}} \omega_{j}=\sum_{l=1}^{N-1} C_{j l} \int_{a_{i}} \tilde{\omega}_{l}=\sum_{l=1}^{N-1} C_{j l} A_{l i}=\delta_{j i},
$$

167 and each

$$
B_{i j}=\int_{b_{j}} \omega_{i}, \quad 1 \leqslant i, j \leqslant N-1
$$

is an entry of $(N-1) \times(N-1)$ matrix $B=\left(B_{i j}\right)$ that characterizes the 168 Riemann surface Γ and applies to construct Riemann theta functions of $\Gamma .169$ Let p_{0} be a fixed point, then the Abel-Jacobi variables can be given by

$$
\begin{align*}
& \rho_{j}^{(1)}(x, t)=\sum_{k=1}^{N-1} \int_{p_{0}}^{\mu_{k}(x, t)} \omega_{j}=\sum_{k=1}^{N-1} \sum_{l=1}^{N-1} C_{j l} \int_{p_{0}}^{\mu_{k}} \frac{\lambda^{l-1} d \lambda}{\sqrt{R(\lambda)}}, \\
& \rho_{j}^{(2)}(x, t)=\sum_{k=1}^{N-1} \int_{p_{0}}^{v_{k}(x, t)} \omega_{j}=\sum_{k=1}^{N-1} \sum_{l=1}^{N-1} C_{j l} \int_{p_{0}}^{v_{k}} \frac{\lambda^{l-1} d \lambda}{\sqrt{R(\lambda)}}, \tag{31}
\end{align*}
$$

Taking derivative with respect to x on both sides of $(31)_{1}$ leads to

$$
\begin{equation*}
\partial_{x} \rho_{j}^{(1)}=\sum_{l=1}^{N-1} \sum_{k=1}^{N-1} C_{j l} \frac{\mu_{k}^{l-1} \mu_{k, x}}{\sqrt{R\left(\mu_{k}\right)}}=\sum_{l=1}^{N-1} \sum_{k=1}^{N-1} C_{j l} \frac{-\mu_{k}^{l-1}}{\prod_{i=1, i \neq k}^{N-1}\left(\mu_{k}-\mu_{i}\right)} . \tag{32}
\end{equation*}
$$

With the help of the formulae [26],

$$
\begin{equation*}
I_{s}=\sum_{k=1}^{N-1} \frac{\mu_{k}^{s}}{\prod_{i=1, i \neq k}^{N-1}\left(\mu_{k}-\mu_{i}\right)}=\delta_{s, N-2}, \quad I_{N-1}=\sigma_{1} I_{N-2}, \quad 1 \leqslant s \leqslant N-2 \tag{33}
\end{equation*}
$$

we obtain

A similar calculation directly yields

$$
\begin{equation*}
\partial_{t} \rho_{j}^{(1)}=\Omega_{j}^{(1)}, \quad \partial_{x} \rho_{j}^{(2)}=-\Omega_{j}^{(0)}, \quad \partial_{t} \rho_{j}^{(2)}=-\Omega_{j}^{(1)}, \tag{35}
\end{equation*}
$$

where $\Omega_{j}^{(1)}=C_{j N-2}+\sigma C_{j N-1}$. Clearly, $\rho_{j}^{(1)}$ and $\rho_{j}^{(2)}$ can be integrated and 175 written as linear superpositions in the flow variables x and t,

$$
\begin{align*}
& \rho_{j}^{(1)}=\Omega_{j}^{(0)} x+\Omega_{j}^{(1)} t+\gamma_{j}^{(1)}, \\
& \rho_{j}^{(2)}=-\Omega_{j}^{(0)} x-\Omega_{j}^{(1)} t+\gamma_{j}^{(2)},
\end{align*}
$$

where

$$
\begin{equation*}
\partial_{x} \rho_{j}^{(1)}=\Omega_{j}^{(0)}, \quad \Omega_{j}^{(0)}=-C_{j N-1}, \quad 1 \leqslant j \leqslant N-1 \tag{34}
\end{equation*}
$$

$$
\gamma_{j}^{(1)}=\sum_{k=1}^{N-1} \int_{p_{0}}^{\mu_{k}(0,0)} \omega_{j}, \quad \gamma_{j}^{(2)}=\sum_{k=1}^{N-1} \int_{p_{0}}^{v_{k}(0,0)} \omega_{j}
$$

are two integral constants.

4 Algebro-Geometric Solutions of the Integrable Equations

Since the Abel-Jacobi solutions ($\rho^{(1)}, \rho^{(2)}$) (see (36)) are solved explicitly, 180 the remaining steps are to write down the explicit expression of u and v of 181

182 integrable system (1). For this purpose, we turn to the procedure of Jacobi 183 inversion

$$
\left(\rho^{(1)}, \rho^{(2)}\right) \Longrightarrow\left(\mu_{k}, v_{k}\right)
$$

Let T be the lattice in \mathbb{C}^{N-1}, which is generated by $2(N-1)$ periodic vectors \mathbb{C}^{N-1} / T of Γ. The Abel map is defined by

$$
\mathcal{A}: \quad \operatorname{Div}(\Gamma) \rightarrow \mathrm{J}(\Gamma), \quad \mathcal{A}(\tilde{\mathrm{p}})=\left(\int_{\mathrm{p}_{0}}^{\tilde{\mathrm{p}}} \omega_{1}, \cdots, \int_{\mathrm{p}_{0}}^{\tilde{\mathrm{p}}} \omega_{\mathrm{N}-1}\right),
$$

187 where \tilde{p} is an arbitrary point on Γ. Moreover, \mathcal{A} can linearly be extended to 188 the factor group

$$
\operatorname{Div}(\Gamma): \quad \mathcal{A}\left(\sum n_{k} \tilde{p}_{k}\right)=\sum n_{k} \mathcal{A}\left(\tilde{p}_{k}\right)
$$

189 From [18, 25], the Riemann theta function is defined by

$$
\begin{aligned}
\theta(\zeta) & =\sum_{z \in \mathbb{Z}^{N-1}} \exp (\pi i\langle B z, z\rangle+2 \pi i\langle\zeta, z\rangle), \quad \zeta \in \mathbb{C}^{N-1} \\
\langle B z, z\rangle & =\sum_{i, j=1}^{N-1} B_{i j} z_{i} z_{j}, \quad\langle\zeta, z\rangle=\sum_{i=1}^{N-1} z_{i} \zeta_{i} .
\end{aligned}
$$

190 Let us consider two special divisors $\sum_{k=1}^{N-1} \tilde{p}_{k}^{(m)}$,

$$
\mathcal{A}\left(\sum_{k=1}^{N-1} \tilde{p}_{k}^{(m)}\right)=\sum_{k=1}^{N-1} \mathcal{A}\left(\tilde{p}_{k}^{(m)}\right)=\sum_{k=1}^{N-1} \int_{p_{0}}^{\tilde{p}_{k}^{(m)}} \omega=\rho^{(m)}, \quad m=1,2,
$$

191 where $\tilde{p}_{k}^{(1)}=\left(\mu_{k}, \zeta\left(\mu_{k}\right)\right)$ and $\tilde{p}_{k}^{(2)}=\left(v_{k}, \zeta\left(v_{k}\right)\right)$. Conforming to the Riemann $M^{(1)}, M^{(2)} \in \mathbb{C}^{N-1}$ determined by Γ such that

194 - $\quad f^{(1)}(\lambda) \triangleq \theta\left(\mathcal{A}(\zeta(\lambda))-\rho^{(1)}-M^{(1)}\right)$ has $N-1$ simple zeros at μ_{1}, \cdots,

- $\quad f^{(2)}(\lambda) \triangleq \theta\left(\mathcal{A}(\zeta(\lambda))-\rho^{(2)}-M^{(2)}\right)$ has $N-1$ simple zeros at ν_{1}, \cdots, v_{N-1}.

197 To make the functions single valued, Γ is cut by all paths a_{k}, b_{k} to form a simply 198 connected region whose boundary is denoted by γ. By the residue formulas, 199 one gets

$$
\begin{align*}
& \sum_{j=1}^{N-1} \mu_{j}=I(\Gamma)-\sum_{s=1}^{2} \operatorname{Res}_{\lambda=\infty_{s}} \lambda d \ln f^{(1)}(\lambda) \\
& \sum_{j=1}^{N-1} v_{j}=I(\Gamma)-\sum_{s=1}^{2} \operatorname{Res}_{\lambda=\infty_{s}} \lambda d \ln f^{(2)}(\lambda) \tag{37}
\end{align*}
$$

where

$$
I(\Gamma)=\frac{1}{2 \pi i} \oint_{\gamma} \lambda d \ln f^{(m)}(\lambda)=\sum_{j=1}^{N-1} \int_{a_{j}} \lambda \omega_{j}, \quad m=1,2
$$

is a constant independent of $\rho^{(m)}[13,36]$. The only requirement is to calculate 201 the residues at both infinities:

$$
\begin{aligned}
\left.f^{(m)}(\lambda)\right|_{\lambda=\infty_{s}}= & \theta\left(\int_{p_{0}}^{\tilde{p}} \omega-\rho^{(m)}-M^{(m)}\right)=\theta\left(\int_{\infty_{s}}^{\tilde{p}} \omega-\pi_{s}-\rho^{(m)}-M^{(m)}\right) \\
= & \theta\left(\cdots, \int_{\infty_{s}}^{\tilde{p}} \omega_{j}-\pi_{s j}-\rho_{j}^{(m)}-M_{j}^{(m)}, \cdots\right) \\
= & \theta\left(\cdots, \rho_{j}^{(m)}+M_{j}^{(m)}+\pi_{s j}+(-1)^{s}\right. \\
& \left.\times\left(C_{j N-1} z+\frac{1}{2}\left(C_{j N-2}+\sigma C_{j N-1}\right) z^{2}+\cdots\right), \cdots\right) \\
= & \theta_{s}^{(m)}\left(\rho^{(m)}+M^{(m)}+\pi_{s}\right)+(-1)^{s+m} \theta_{s, x}^{(m)} z+\cdots
\end{aligned}
$$

where $\pi_{s j}=\int_{\infty_{s}}^{p_{0}} \omega_{j}(s, m=1,2)$. Therefore, we arrive at

$$
\begin{equation*}
\operatorname{Res}_{\lambda=\infty_{s}} \lambda d \ln f^{(m)}(\lambda)=(-1)^{s+m} \partial_{x} \ln \theta_{s}^{(m)} \tag{38}
\end{equation*}
$$

where

$$
\theta_{s}^{(1)}=\theta\left(\Omega^{(0)} x+\Omega^{(1)} t+\Upsilon_{s}\right), \quad \theta_{s}^{(2)}=\theta\left(-\Omega^{(0)} x-\Omega^{(1)} t+\Lambda_{s}\right)
$$

with

$$
\Upsilon_{s j}=\gamma_{j}^{(1)}+M_{j}^{(1)}+\pi_{s j}, \quad \Lambda_{s j}=\gamma_{j}^{(2)}+M_{j}^{(2)}+\pi_{s j}, \quad 1 \leqslant j \leqslant N-1
$$

From (37) and (38), we have

$$
\begin{equation*}
\sum_{l=1}^{N-1} \mu_{l}=I(\Gamma)+\partial_{x} \ln \frac{\theta_{2}^{(1)}}{\theta_{1}^{(1)}}, \quad \sum_{l=1}^{N-1} v_{l}=I(\Gamma)+\partial_{x} \ln \frac{\theta_{1}^{(2)}}{\theta_{2}^{(2)}} \tag{39}
\end{equation*}
$$

Substituting (39) into (24), we get the algebro-geometric solutions of integrable 207 system (1),
$u=-\frac{1}{2} \partial_{x} \ln \frac{\theta\left(\Omega^{(0)} x+\Omega^{(1)} t+\Upsilon_{2}\right)}{\theta\left(\Omega^{(0)} x+\Omega^{(1)} t+\Upsilon_{1}\right)} \frac{\theta\left(-\Omega^{(0)} x-\Omega^{(1)} t+\Lambda_{1}\right)}{\theta\left(-\Omega^{(0)} x-\Omega^{(1)} t+\Lambda_{2}\right)}-I(\Gamma)+\sigma$,
$v^{2}=\frac{\theta\left(\Omega^{(0)} x+\Omega^{(1)} t+\Upsilon_{2}\right)}{\theta\left(\Omega^{(0)} x+\Omega^{(1)} t+\Upsilon_{1}\right)} \frac{\theta\left(-\Omega^{(0)} x-\Omega^{(1)} t+\Lambda_{2}\right)}{\theta\left(-\Omega^{(0)} x-\Omega^{(1)} t+\Lambda_{1}\right)} \frac{\theta\left(\Omega^{(1)} t+\Upsilon_{1}\right)}{\theta\left(\Omega^{(1)} t+\Upsilon_{2}\right)} \frac{\theta\left(-\Omega^{(1)} t+\Lambda_{1}\right)}{\theta\left(-\Omega^{(1)} t+\Lambda_{2}\right)} v^{2}(0, t)$.
In conclusion, the algebro-geometric solutions of integrable system (1) are 209 attained, which implies that the two Neumann type systems in this paper are 210 successfully used to derive algebro-geometric solutions of integrable equations 211 in (1+1)-dimensional just like the procedure shown in [33]. This procedure 2
is different from the utilization of finite dimensional integrable Hamiltonian systems in the case of Bargmann constraint $[19,24,35]$ that corresponds to the whole symplectic space. We will try to solve some other integrable equations under the Neumann constraint.

Acknowledgements The authors greatly appreciate the referee for his/her helpful suggestions and comments.

Chen is supported by the National Natural Science Foundation of China (Grant No. 11001050), and Qiao by the U. S. Army Research Office under contract/grant number W911NF-08-1-0511 and the Texas Norman Hackerman Advanced Research Program under Grant 003599- 0001-2009.

References

1. Alber, M.S., Camassa, R., Fedorov, Y.N., Holm, D.D., Marsden, J.E.: Commun. Math. Phys. 221, 197 (2001)
2. Arnold, A.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1978)
3. Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear evolution equations. Springer Series in Nonlinear Dynamics. SpringerVerlag (1994)
4. Cao, C.W.: Sci. China A 33, 528 (1990)
5. Cao, C.W., Geng, X.G.: In: Proc. Conf. on Nonlinear Physics, Shanghai 1989, vol. 68. Research Reports in Physics, Springer, Berlin (1990)
6. Cao, C.W., Geng, X.G.: J. Phys. A 23, 4117 (1990)
7. Cao, C.W., Wu, Y.T., Geng, X.G.: J. Math. Phys. 40, 3948 (1999)
8. Cheng, Y., Li, Y.S.: Phys. Lett. A 157, 22 (1991)
9. Chen, J.B.: Chaos, Solitons \& Fractals 24, 519 (2005)
10. Chen, J.B.: Nuovo Cim. B 124, 473 (2009)
11. Chen, J.B.: J. Math. Phys. 50, 123504 (2009)
12. Chen, J.B.: J. Math. Phys. 51, 083514 (2010)
13. Dickey, L.A.: Soliton Equations and Hamiltonian Systems. World Scientific, Singapore (1991)
14. Flaschka, H.: Non-linear Integrable System-Classical Theory and Quantum Theory, 1981. In: Jimbo, M., Miwa, T. (eds.) Proceedings of RIMS Symposium, Kyoto. Japan, vol. 219. World Scientific, Singapore (1983)
15. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Phys. Rev. Lett. 19, 1095 (1967)
16. Geng, X.G., Cao, C.W.: Nonlinearity 14, 1433 (2001)
17. Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions. Cambridge University Press, Cambridge (2003)
18. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)
19. Knoerrer, H.: J. Reine Angew. Math. 334, 69 (1982)
20. Lax, P.D.: Commun. Pure Appl. Math. 21, 467 (1968)
21. Matveev, V.: Philos. Trans. R. Soc. A 366, 837 (2008)
22. Moser, J.: Adv. Math. 16, 197 (1975)
23. Moser, J.: In: Li, S.T. (ed.) Proceedings of Beijing Symposium on Differential Geometry and Differential Equation 1983, vol. 157. Science, Beijing (1986)
24. Moser, J.: Integrable Hamiltonian System and Spectral Theory. Lezioni Fermiane, Pisa (1981)
25. Mumford, D.: Tata Lectures on Theta. Birkhauser, Boston (1984)
26. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)
27. Qiao, Z.J.: J. Math. Phys. 35, 2978 (1994)
28. Qiao, Z.J.: Generalized Lax Algebra, r-matrix and Algebro-Geometric Soultion for the Integrable System. Preprint 1996, Ph D Thesis, Fudan University, People's Republic of China (1997)
29. Qiao, Z.J., Zhou, R.G.: Phys. Lett. A 235, 35 (1997)
30. Qiao, Z.J.: Chin. Sci. Bull. (English) 44, 114 (1999)
31. Qiao, Z.J.: Rev. Math. Phys. 13, 545 (2001)
32. Qiao, Z.J.: Finite-dimensional Integrable System and Nonlinear Evolution Equations. Chinese 264 National Higher Education Press, Beijing (2002) 265
33. Qiao, Z.J.: Commun. Math. Phys. 239, 309 (2003)
34. Tu, G.Z., Meng, D.Z.: Acta Math. Appl. Sin. (English Sieres) 5, 89 (1989)
35. Veselov, A.: Funct. Anal. 14, 48 (1980)
36. Zhou, R.G.: J. Math. Phys. 38, 2535 (1997)
37. Zhou, R.G.: The Finite Dimensional Integrable Systems Related to the Soliton Equations. 270 Preprint 1996, Ph D Thesis, Fudan University, People's Republic of China (1997)270
38. Zhou, R.G.: J. Math. Phys. 39, 2848 (1998)
39. Zhou, R.G., Qiao, Z.J.: Commun. Theor. Phys. 34, 229 (2000)

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Q1. Please check provided running title if appropriate.
Q2. Please provide contribution title for reference items [1], [412], [15], [16], [19-23], [26], [27], [29-31], [33-36], [38] and [39].
Q3. Reference item [29] was not cited in the body. Please provide citation.

[^0]: J. Chen

 Department of Mathematics, Southeast University, Nanjing, Jiangsu 210096,
 People's Republic of China
 e-mail: cjb@seu.edu.cn
 Z. Qiao (\boxtimes)

 Department of Mathematics, University of Texas—Pan American, Edinburg, TX 78539, USA
 e-mail: qiao@utpa.edu

