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Abstract A system of (1+1)-dimensional coupled integrable equations is de- 1

composed into a pair of new Neumann type systems that separate the spatial 2

and temporal variables for this system over a symplectic submanifold. Then, 3

the Neumann type flows associated with the coupled integrable equations are 4

integrated on the complex tour of a Riemann surface. Finally, the algebro- 5

geometric solutions expressed by Riemann theta functions of the system of 6

coupled integrable equations are obtained by means of the Jacobi inversion. 7

Keywords Integrable equations · Neumann type systems · 8

Algebro-geometric solutions 9

Mathematics Subject Classifications (2010) 37K10 · 37J35 · 70H06 10

1 Introduction 11

The Neumann system of harmonic oscillator constrained on the unit sphere is a 12

prototype of finite dimensional integrable system (FDIS) with rich mathemati- 13

cal natures in the area of classical mechanics [22]. Based on the Flaschka’s idea, 14

Moser’s, Veselov’s and Knoerrer’s work [14, 19, 23, 24, 35], a number of new 15
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FDISs of both Neumann and Bargmann types were found under a symmetric16

constraint between spectral potentials and eigenfunctions in the framework17

of the nonlinearization of Lax pair [4, 5]. The FDISs of Bargmann type are18

the canonical Hamiltonian systems produced under a Bargmann constraint19

from the Lax pair of an integrable equation; while the FDISs of Neumann20

type are generated under a Neumann constraint on the symplectic submanifold21

[6, 9, 11, 27, 28, 33, 37, 38]. Those resultant FDISs not only enrich the content22

of integrable systems itself, but also pave an effective way to solve integrable23

equations via the separation of spatial and temporal variables. It is already24

noticed that finite dimensional integrable Hamiltonian systems have been used25

to get algebro-geometric solutions through the finite parametric (or involutive)26

solutions of integrable equations with the help of the theory of algebraic27

curves [1, 7, 16, 17, 28, 30, 31, 36, 37]. In particular, a Neumann type system28

was already applied by Qiao to obtain the algebro-geometric solution of the29

Camassa–Holm (CH) equation on a symplectic submanifold [33], where the30

Lax matrix, dynamical r-matrix and Jacobi inversion were involved in.31

To understand deeply the physical applications of integrable dynamical32

systems , one has to derive all kinds of explicit solutions for nonlinear evolution33

equations from different standpoints. After the breakthrough discovery of34

inverse scattering transformation [15], many interesting explicit solutions have35

been found, including the classical soliton solutions, the algebro-geometric36

(or finite-gap, quasi-periodic) solutions, and the polar expansion solutions.37

One can easily see that all explicit solutions of physical interests have a finite38

number of parameters. A deeper insight indicates that they may satisfy certain39

solvable ordinary differential equations and can be obtained through tackling40

the associated FDISs, which are reduced from integrable equations. Apart41

from the fruitful application of finite dimensional integrable Hamiltonian42

systems [1, 7, 16, 17, 28, 30, 31, 36, 37] and the work of the CH Neumann43

system with algebro-geometric solution [33], we also found that the Neumann44

type flow is in essential the Hamiltonian flow in the sense of Dirac–Poisson45

bracket over a symplectic submanifold, and the Neumann constraint under the46

scheme of nonlinearization of Lax pair directly cast in a finite dimensional47

invariant submanifold in quite a few cases [11, 28, 33]. In particular, the48

generating function of integrals of motion of Neumann type system determines49

a Riemann surface of hyperelliptic curve that pave a bridge to construct Abel–50

Jacobi (or angel) variables for integrable equations [12, 33]. Following the51

above-mentioned analysis, in this paper we present a distinct way by using the52

Neumann type systems to derive new algebro-geometric solutions for more53

integrable equations of physical and mathematical interests.54

To illustrate our scheme, we study the algebro-geometric solutions of the55

following (1+1)-dimensional nonlinear evolution equations [34]56 {
ut = v−2vxvxx − v−1vxxx − 2uux − 4vvx,

vt = −2uvx − uxv.
(1)

In fact, the system (1) is the coupled integrable equations from the TD57

hierarchy, which allows the zero-curvature representation in the sense of Lax58
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compatibility [20], the Hamiltonian structure in view of the trace identity [34], 59

and the one- and two-soliton solutions by the Darboux transformation [10]. In 60

the following, we will provide a feasible relation between two Neumann type 61

systems stemmed from the Lax pair of (1) and algebro-geometric solutions 62

of the integrable system (1). To see this, the integrable system (1) is reduced 63

to two FDISs of Neumann type, whose compatible solutions yield solutions 64

of (1) through a direct algebraic operation [8]. An interesting thing is that two 65

Neumann type systems share the common Lax matrix and a dynamical r-matrix 66

structure in the Dirac–Poisson bracket [28, 32, 37, 39], instead of the standard 67

Poisson bracket since we construct Neumann type systems on a symplectic 68

submanifold. 69

The Lax matrix and the dynamical r-matrix guarantee that the two 70

Neumann type systems are completely integrable in the Liouville sense. Re- 71

ferring to the approach for getting algebro-geometric solutions for (1+1)- and 72

(2+1)-dimensional integrable equations [3, 7, 16, 17, 21, 28, 30, 31, 36, 37], two 73

sets of elliptic variables are singled out from the entries of Lax matrix, and 74

solutions of the integrable system (1) are expressed by the symmetric func- 75

tions with respect to these elliptic variables. Furthermore, through discussing 76

the Jacobi inversion, we attain the algebro-geometric solutions of integrable 77

system (1) in terms of Riemann theta functions. 78

The whole paper is organized as follows. In the next section, we decompose 79

the integrable system (1) into two FDISs of Neumann type. In Section 3, the 80

Neumann type flows are linearized/straightened out on the complex tour of a 81

Riemann surface, and in Section 4 we derive the algebro-geometric solutions 82

of integrable system (1) through the Jacobi inversion. 83

2 Decomposition of Integrable Equations 84

To describe our results, we first collect some necessary notations and formulas. 85

Let us begin with the spectral problem [34] 86

ϕx = Uϕ, U =

⎛
⎜⎜⎝

−1
2
λ + 1

2
u −v

v
1
2
λ − 1

2
u

⎞
⎟⎟⎠ , ϕ =

(
ϕ1
ϕ2

)
, (2)

where λ is a spectral parameter, and u and v are two spectral potentials. In 87

order to derive the integrable hierarchy associated with (2), we define the 88

Lenard sequence {g j} (−1 � j ∈ Z) by 89

Kg j−1 = Jg j, Jg−1 = 0, j � 0, (3)

with 90

K =
⎛
⎜⎝−1

2
∂v−1∂v−1∂ − 2∂ −1

2
∂v−1u

−1
2

uv−1∂ −1
2
∂

⎞
⎟⎠ , J =

⎛
⎜⎝ 0 −1

2
∂v−1

−1
2
v−1∂ 0

⎞
⎟⎠ , (4)
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where ∂ = ∂/∂x and ∂−1 is the inverse of ∂ : ∂−1∂ = ∂∂−1 = 1. Noticing that the91

kernel of J is of dimension 2 with two generators g−1 = (0, 2v)T and g−2 =92 ( 1
2 , 0

)T
, one can easily get93

ker J = {�1g−1 + �2g−2|∀�1, �2 ∈ R}.
Each g j can be determined by the recursion formula (3). In particular, we have94

g0 = (
v2, 2uv

)T
, g1 = (

2uv2, 2vxx + 2u2v + 4v3)T
. (5)

Let us consider an auxiliary spectral problem that is the time-dependent part95

of (2)96

ϕtn = V(n)ϕ, V(n) =
(

V(n)
11 V(n)

12
V(n)

21 −V(n)
11

)
, n � 1, (6)

where97

V(n)
11 = −1

4
v−1∂v−1∂g(1) + 1

4
(λ − u)v−1g(2), V(n)

12 = −1
2
v−1∂g(1) + 1

2
g(2),

V(n)
21 = −1

2
v−1∂g(1) − 1

2
g(2), g = (

g(1), g(2)
)T =

n∑
j=0

g j−2λ
n− j.

Then the compatibility condition of (2) and (6) gives the integrable hierarchy98

[34]99

(u, v)T
tn = Jgn−1, n � 1. (7)

Apparently, the first nontrivial member of (7) is the integrable system (1) with100

t = t2, which is the compatibility condition of Lax pair (2) and101

ϕt = V(2)ϕ, V(2) =
⎛
⎜⎝

1
2
λ2 − 1

2
u2 − 1

2
v−1vxx λv − vx + uv

−λv − vx − uv −1
2
λ2 + 1

2
u2 + 1

2
v−1vxx

⎞
⎟⎠ .

(8)

In what follows, we want to decompose (1) into two Neumann type systems102

on a symplectic submanifold. Let us consider N copies of the spectral problem103

(2) with N distinct eigenvalues λ1, λ2, · · · , λN and their corresponding eigen-104

functions ϕ = (pj, q j)
T ,105

(
pj

q j

)
x

=
⎛
⎜⎝−1

2
λ j + 1

2
u −v

v
1
2
λ j − 1

2
u

⎞
⎟⎠

(
pj

q j

)
, 1 � j � N. (9)

One can readily calculate the functional gradient of each eigenvalue λ j with106

respect to the spectral potentials u and v [9]107

∇λ j = (
δλ j/δu, δλ j/δv

)T =
(

pjq j, −
(

p2
j + q2

j

))T
. (10)
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Taking into account the Neumann constraint [4, 5, 9] 108

g−1 =
N∑

j=1

∇λ j, (11)

leads to 109

〈p, q〉 = 0, 〈p, p〉 − 〈q, q〉 = 0,

u = 〈�p, p〉 + 〈�q, q〉
〈p, p〉 + 〈q, q〉 = 1

2

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

,

v = −〈p, p〉 + 〈q, q〉
2

= −〈p, p〉, (12)

where p = (p1, · · · , pN)T , q = (q1, · · · , qN)T , � = diag(λ1, · · · , λN), and 〈·, ·〉 110

stands for the standard inner product in R
N . In accordance with the rule of 111

the nonlinearization of Lax pair, substituting (12) into (9) gives rise to the first 112

nonlinear dynamical system of Neumann type, 113⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

px = −1
2
�p + 1

4

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

p + 〈p, p〉q,

qx = 1
2
�q − 1

4

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

q − 〈q, q〉p,

〈p, q〉 = 0, 〈p, p〉 − 〈q, q〉 = 0.

(13)

On condition that the independent temporal variable t is regarded as the 114

equivalence to the spatial variable x in the view point of mathematics, imposing 115

the Neumann constraint (12) onto the time-dependent part (8) leads to another 116

new Neumann type system 117

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pt = 1
2
�2 p+ 〈�p, q〉p− 1

4

( 〈�2 p, p〉
〈p, p〉 + 〈�2q, q〉

〈q, q〉
)

p− 〈p, p〉�q− 〈�p, p〉q,

qt = 〈q, q〉�p + 〈�q, q〉p − 1
2
�2q − 〈�p, q〉q + 1

4

( 〈�2 p, p〉
〈p, p〉 + 〈�2q, q〉

〈q, q〉
)

q,

〈p, q〉 = 0, 〈p, p〉 − 〈q, q〉 = 0.

(14)

A direct but lengthy computation yields the following proposition 118

Proposition 1 Let (p(x, t), q(x, t))T be the compatible solution of the two 119

Neumann type systems (13) and (14), then 120

u(x, t) = 1
2

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

, v(x, t) = −〈p, p〉, (15)

are solutions of the integrable equations (1). 121
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So, by this proposition, the integrable equations (1) can be solved with a122

finite parametric solution (15) through solving a pair of (finite dimensional)123

nonlinear dynamical systems of ordinary differential equations (13) and (14).124

By using the procedure shown in [9, 28, 31, 32, 37, 39], we know that the125

Neumann type system (13) admits the Lax representation126

Lx(λ) = [Ū, L(λ)], Lx(λ) = ∂L(λ)/∂x, (16)

where127

L(λ) =
⎛
⎜⎝

1
2

0

0 −1
2

⎞
⎟⎠ +

N∑
j=1

1
λ − λ j

(
q j p j −p2

j
q2

j −q j p j

)
�

(
A(λ) B(λ)

C(λ) −A(λ)

)
, (17)

and128

Ū =

⎛
⎜⎜⎜⎝

−1
2
λ + 1

4

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

〈p, p〉

−〈p, p〉 1
2
λ − 1

4

( 〈�p, p〉
〈p, p〉 + 〈�q, q〉

〈q, q〉
)

⎞
⎟⎟⎟⎠ .

(18)

Actually, the Lax matrix (17) was first discussed in [28, 32, 39] to classify129

the FDISs. A very interesting fact is that the Neumann type system (14),130

i.e. the nonlinearization of the time-dependent part (8) under the Neumann131

constraint, admits the Lax representation with the same Lax matrix L(λ)132

defined by (17)133

Lt(λ) = [V̄(2), L(λ)], Lt(λ) = ∂L(λ)/∂t, (19)

where134

V̄(2) =
(

V̄(2)
11 −λ〈p, p〉 − 〈�p, p〉

λ〈q, q〉 + 〈�q, q〉 −V̄(2)
11

)
, (20)

with135

V̄(2)
11 = 1

2
λ2 + 〈�p, q〉 − 1

4

( 〈�2 p, p〉
〈p, p〉 + 〈�2q, q〉

〈q, q〉
)

.

The Neuamnn type systems (13) and (14) are completely integrable in the136

Liouville sense since L(λ) satisfies a dynamical r-matrix structure in the Dirac–137

Poisson bracket [9, 32, 38, 39]. Consequently, this assures the compatibility of138

the two Neumann type systems (13) and (14), which implies that the Neumann139

type flows mutually commute [2].140

3 Straightening Out of the Neumann Type Flows141

To get explicit solutions of integrable system (1), we adopt the procedure142

of straightening out Neumann type flows that are restricted on a symplectic143
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submanifold. To do this, we select two sets of elliptic variables μ1, μ2, · · · , 144

μN−1 and ν1, ν2, · · · , νN−1 from the entries of L(λ), 145

B(λ) = −
N∑

j=1

p2
j

λ − λ j
= −〈p, p〉m(λ)

a(λ)
,

C(λ) =
N∑

j=1

q2
j

λ − λ j
= 〈q, q〉n(λ)

a(λ)
,

(21)

where 146

a(λ) =
N∏

k=1

(λ − λk), m(λ) =
N−1∏
k=1

(λ − μk), n(λ) =
N−1∏
k=1

(λ − νk). (22)

The combination of (21) and (22) gives 147

〈�p, p〉
〈p, p〉 =

N∑
j=1

λ j −
N−1∑
j=1

μ j � σ − σ1,

〈�q, q〉
〈q, q〉 =

N∑
j=1

λ j −
N−1∑
j=1

ν j � σ − σ2. (23)

By (12) and (20), one obtains 148

u = σ − 1
2
(σ1 + σ2), ∂x ln v = 1

2
(σ1 − σ2), (24)

and 149

{
V̄(2)

12 = −〈p, p〉(λ + σ − σ1),

V̄(2)
21 = 〈q, q〉(λ + σ − σ2).

(25)

Define 150

det L(λ) = −A(λ)2 − B(λ)C(λ) = − b(λ)

4a(λ)
= − R(λ)

4a2(λ)
, (26)

where 151

b(λ) =
N∏

k=1

(λ − λN+k), R(λ) = a(λ)b(λ) =
2N∏
k=1

(λ − λk).

It follows from (21), (22) and (26) that 152

A(μk) =
√

R(μk)

2a(μk)
, A(νk) =

√
R(νk)

2a(νk)
, 1 � k � N − 1. (27)
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By (21), (16) and (19), we arrive at the evolution equation of all μk and νk153

regarding x and t,154

dμk

dx
= −

√
R(μk)

N−1∏
i=1,i �=k

(μk − μi)

,
dνk

dx
=

√
R(νk)

N−1∏
i=1,i �=k

(νk − νi)

, 1 � k � N − 1,

(28)

and155 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dμk

dt
= (μk − σ1 + σ)

√
R(μk)

N−1∏
i=1,i �=k

(μk − μi)

,

dνk

dt
= (−νk + σ2 − σ)

√
R(νk)

N−1∏
i=1,i �=k

(νk − νi)

,

1 � k � N − 1. (29)

These formulas naturally lead to the consideration of the Riemann surface 
156

of hyperelliptic curve given by the equation ξ 2 = R(λ), whose genus is N − 1.157

For the same λ, there exist two points (λ,
√

R(λ)) and (λ, −√
R(λ)) on the158

upper and lower sheets of 
, and there are two points at infinity that are not the159

branch points because degR(λ) = 2N. Under an alternative local coordinate160

z = λ−1, they are marked as ∞1 = (0, 1) and ∞2 = (0, −1).161

Let a1, a2, · · · , aN−1; b 1, b 2, · · · , b N−1 be a set of regular cycle paths on 
,162

which are automatically independent if they have the intersection numbers163

ai ◦ a j = bi ◦ b j = 0, ai ◦ b j = δij, i, j = 1, 2, · · · , N − 1.

It is well known that164

ω̃l = λl−1dλ√
R(λ)

, 1 � l � N − 1,

are N − 1 linearly independent holomorphic differentials of 
. Let165

Aij =
∫

a j

ω̃i, C = (Aij)
−1, 1 � i, j � N − 1, (30)

then ω̃l can be normalized into a new basis ω j,166

ω j =
N−1∑
l=1

C jlω̃l,

∫
ai

ω j =
N−1∑
l=1

C jl

∫
ai

ω̃l =
N−1∑
l=1

C jl Ali = δ ji,

and each167

Bij =
∫

b j

ωi, 1 � i, j � N − 1,
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is an entry of (N − 1) × (N − 1) matrix B = (Bij) that characterizes the 168

Riemann surface 
 and applies to construct Riemann theta functions of 
. 169

Let p0 be a fixed point, then the Abel–Jacobi variables can be given by 170

ρ
(1)

j (x, t) =
N−1∑
k=1

∫ μk(x,t)

p0

ω j =
N−1∑
k=1

N−1∑
l=1

C jl

∫ μk

p0

λl−1dλ√
R(λ)

,

ρ
(2)

j (x, t) =
N−1∑
k=1

∫ νk(x,t)

p0

ω j =
N−1∑
k=1

N−1∑
l=1

C jl

∫ νk

p0

λl−1dλ√
R(λ)

,

1 � j � N − 1.

(31)

Taking derivative with respect to x on both sides of (31)1 leads to 171

∂xρ
(1)

j =
N−1∑
l=1

N−1∑
k=1

C jl
μl−1

k μk,x√
R(μk)

=
N−1∑
l=1

N−1∑
k=1

C jl
−μl−1

k
N−1∏

i=1,i �=k
(μk − μi)

. (32)

With the help of the formulae [26], 172

Is =
N−1∑
k=1

μs
k

N−1∏
i=1,i �=k

(μk − μi)

= δs,N−2, IN−1 = σ1 IN−2, 1 � s � N − 2,

(33)
we obtain 173

∂xρ
(1)

j = �
(0)

j , �
(0)

j = −C jN−1, 1 � j � N − 1. (34)

A similar calculation directly yields 174

∂tρ
(1)

j = �
(1)

j , ∂xρ
(2)

j = −�
(0)

j , ∂tρ
(2)

j = −�
(1)

j , (35)

where �
(1)

j = C jN−2 + σC jN−1. Clearly, ρ
(1)

j and ρ
(2)

j can be integrated and 175

written as linear superpositions in the flow variables x and t, 176

ρ
(1)

j = �
(0)

j x + �
(1)

j t + γ
(1)

j ,

ρ
(2)

j = −�
(0)

j x − �
(1)

j t + γ
(2)

j ,
1 � j � N − 1, (36)

where 177

γ
(1)

j =
N−1∑
k=1

∫ μk(0,0)

p0

ω j, γ
(2)

j =
N−1∑
k=1

∫ νk(0,0)

p0

ω j,

are two integral constants. 178

4 Algebro-Geometric Solutions of the Integrable Equations 179

Since the Abel–Jacobi solutions (ρ(1), ρ(2)) (see (36)) are solved explicitly, 180

the remaining steps are to write down the explicit expression of u and v of 181
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integrable system (1). For this purpose, we turn to the procedure of Jacobi182

inversion183

(ρ(1), ρ(2)) =⇒ (μk, νk).

Let T be the lattice in C
N−1, which is generated by 2(N − 1) periodic vectors184

{δi, B j}. Then we have the following complex tour—called Jacobian J(
) =185

C
N−1/T of 
. The Abel map is defined by186

A : Div(
) → J(
), A(p̃) =
(∫ p̃

p0

ω1, · · · ,

∫ p̃

p0

ωN−1

)
,

where p̃ is an arbitrary point on 
. Moreover, A can linearly be extended to187

the factor group188

Div(
) : A
(∑

nk p̃k

)
=

∑
nkA( p̃k).

From [18, 25], the Riemann theta function is defined by189

θ(ζ ) =
∑

z∈ZN−1

exp (π i〈Bz, z〉 + 2π i〈ζ, z〉), ζ ∈ C
N−1,

〈Bz, z〉 =
N−1∑
i, j=1

Bijziz j, 〈ζ, z〉 =
N−1∑
i=1

ziζi.

Let us consider two special divisors
∑N−1

k=1 p̃(m)

k ,190

A
(

N−1∑
k=1

p̃(m)

k

)
=

N−1∑
k=1

A
(

p̃(m)

k

)
=

N−1∑
k=1

∫ p̃(m)

k

p0

ω = ρ(m), m = 1, 2,

where p̃(1)

k = (μk, ζ(μk)) and p̃(2)

k = (νk, ζ(νk)). Conforming to the Riemann191

theorem [18], there exist two constant vectors (called Riemann constants)192

M(1), M(2) ∈ C
N−1 determined by 
 such that193

• f (1)(λ) � θ(A(ζ(λ)) − ρ(1) − M(1)) has N − 1 simple zeros at μ1, · · · ,194

μN−1,195
• f (2)(λ) � θ(A(ζ(λ)) − ρ(2) − M(2)) has N − 1 simple zeros at ν1, · · · , νN−1.196

To make the functions single valued, 
 is cut by all paths ak, b k to form a simply197

connected region whose boundary is denoted by γ . By the residue formulas,198

one gets199

N−1∑
j=1

μ j = I(
) −
2∑

s=1

Res
λ=∞s

λd ln f (1)(λ),

N−1∑
j=1

ν j = I(
) −
2∑

s=1

Res
λ=∞s

λd ln f (2)(λ), (37)
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where 200

I(
) = 1
2π i

∮
γ

λd ln f (m)(λ) =
N−1∑
j=1

∫
a j

λω j, m = 1, 2,

is a constant independent of ρ(m) [13, 36]. The only requirement is to calculate 201

the residues at both infinities: 202

f (m)(λ)|λ=∞s = θ

(∫ p̃

p0

ω − ρ(m) − M(m)

)
= θ

(∫ p̃

∞s

ω − πs − ρ(m) − M(m)

)

= θ

(
· · · ,

∫ p̃

∞s

ω j − πsj − ρ
(m)

j − M(m)

j , · · ·
)

= θ

(
· · · , ρ

(m)

j + M(m)

j + πsj + (−1)s

×
(

C jN−1z + 1
2

(
C jN−2 + σC jN−1

)
z2 + · · ·

)
, · · ·

)

= θ(m)
s

(
ρ(m) + M(m) + πs

) + (−1)s+mθ(m)
s,x z + · · · ,

where πsj = ∫ p0

∞s
ω j (s, m = 1, 2). Therefore, we arrive at 203

Res
λ=∞s

λd ln f (m)(λ) = (−1)s+m∂x ln θ(m)
s , (38)

where 204

θ(1)
s = θ(�(0)x + �(1)t + ϒs), θ (2)

s = θ(−�(0)x − �(1)t + �s),

with 205

ϒsj = γ
(1)

j + M(1)

j + πsj, �sj = γ
(2)

j + M(2)

j + πsj, 1 � j � N − 1.

From (37) and (38), we have 206

N−1∑
l=1

μl = I(
) + ∂x ln
θ

(1)
2

θ
(1)
1

,

N−1∑
l=1

νl = I(
) + ∂x ln
θ

(2)
1

θ
(2)
2

. (39)

Substituting (39) into (24), we get the algebro-geometric solutions of integrable 207

system (1), 208

u = −1
2
∂x ln

θ(�(0)x + �(1)t + ϒ2)

θ(�(0)x + �(1)t + ϒ1)

θ(−�(0)x − �(1)t + �1)

θ(−�(0)x − �(1)t + �2)
− I(
) + σ,

v2= θ(�(0)x+�(1)t+ϒ2)

θ(�(0)x+�(1)t+ϒ1)

θ(−�(0)x−�(1)t+�2)

θ(−�(0)x−�(1)t+�1)

θ(�(1)t+ϒ1)

θ(�(1)t+ϒ2)

θ(−�(1)t+�1)

θ(−�(1)t+�2)
v2(0,t).

In conclusion, the algebro-geometric solutions of integrable system (1) are 209

attained, which implies that the two Neumann type systems in this paper are 210

successfully used to derive algebro-geometric solutions of integrable equations 211

in (1+1)-dimensional just like the procedure shown in [33]. This procedure 212
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is different from the utilization of finite dimensional integrable Hamiltonian213

systems in the case of Bargmann constraint [19, 24, 35] that corresponds to the214

whole symplectic space. We will try to solve some other integrable equations215

under the Neumann constraint.216
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