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Abstract

By making use of our previous framework, we display the hierarchies of generalized non-
linear evolution equations (GNLEEs) associated with the Harry–Dym spectral problem, and
construct the corresponding generalized Lax representations (GLR) in this paper. It will be
clearly seen that the generalized hierarchies can include not only the well-known Harry–Dym
hierarchy of isospectral NLEEs but also other new integrable hierarchies of isospectral and
non-isospectral NLEEs. Through choosing the so-called ‘seed’ function these new hierarchies of
NLEEs give some new integrable evolution equations, which are very likely to have potential
applications in theoretical and experimental physics. All of these hierarchies of NLEEs possess
the GLR. c© 1998 Elsevier Science B.V. All rights reserved.

It is well known that, beginning with a proper linear spectral problem Ly= �y (�
is a spectral parameter), we cannot only generate an isospectral (�t =0) hierarchy
of nonlinear evolution equations (NLEEs) integrable by the IST (see Refs. [ 1–7]),
but also produce a corresponding non-isospectral (for example, �t = �n, n¿0) hierar-
chy of NLEEs [8] which are often solved still by the IST [9]. Generally, the NLEEs
(whether isospectral or non-isospectral hierarchy) by the famous IST [1] possess the
Lax representation. Among these are the well-known KdV equation, AKNS equation
in 1+1 dimensions and KP equation, Davey–Stewarton equation in 1+2 dimensions
[2,10]. In the past two decades the Lax representation of the hierarchy of NLEEs has
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played a very important role in the research and discussion of NLEEs and symmetry.
In particular, the Lax representation has been successively used in bi-Hamiltonian struc-
tures of �nite-dimensional dynamical systems [11,12], the nonlinearization theory of
soliton system to produce many new completely integrable systems in the Liouville
sense [13,14], and the �nite-dimensional restricted 
ows of the underlying in�nite sys-
tems [15]. Hence, for a given hierarchy of NLEEs, to �nd the Lax representation is of
great importance.
In a previous paper [16], we mainly discussed the algebraic structure of the operator

related to stationary systems. And before doing that, we �rst presented a so-called
operator pattern for generating hierarchies of generalized nonlinear evolution equations
(GNLEEs) and their generalized Lax representations (GLR) (see Ref. [16], also see
Ref. [17]). In recent years, the time-discrete versions [18] of integrable systems have
already attracted a lot of attention. Capel, Nijho� and their collaborators have obtained
many developments [ 19–21] in this �elds, and their methods have been considered for
establishing a new Lax pair from the time part of the old Lax pair for the continuous
integrable evolution equations [22].
The present paper is inspired on the idea of combining our previous framework [16]

with the line of thought of Capel, Nijho� and their collaborators [20,21,23]. We shall
display the hierarchies of GNLEEs associated with the Harry–Dym spectral problem by
the Lenard recursive scheme, and construct the corresponding GLR by solving a key
operator equation. We shall clearly see that the generalized hierarchies can include not
only the well-known Harry–Dym hierarchy of isospectral NLEEs but also other new
integrable hierarchies of isospectral and non-isospectral NLEEs. These new hierarchies
contain some new integrable evolution equations which may be possibly applied in the
study of theoretical and experimental physics. All of these hierarchies of integrable
NLEEs have the GLR.
For the convenient use, let us �rst shortly recall the productive procedure of GNLEEs

and GLR. Consider an ordinary N × N spectral problem

Ly= L(u)y= �y ; (1)

where L= L(u) is a spectral operator, u=(u1; : : : ; ul)T is a potential vector function, �
is a spectral parameter, y=(y1; : : : ; yN )T . Let M =(mij)N×N , M̃ =(m̃ij)N×N be two
arbitary given N × N matrix operators. We construct the following two operator
equations with respect to the vector functions G0 = (G

(1)
0 ; : : : ; G

(l)
0 )

T ; G−1 = (G
(1)
−1; : : : ;

G(l)−1)
T :

L∗(JG0)=M ; (2)

L∗(KG−1)= M̃ ; (3)

where L∗(�) stands for the Gateaux derivative operator of L(u) in the direction �, and
K; J are a pair of Lenard’s operators which is usually searched for by the spectral
gradient method (SGM) [24,25]. Suppose the solution set ℵJ (M) 6= ∅, ℵK (M̃) 6= ∅ of
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Eqs. (2) and (3), then the following NLEEs:

utm =Xm(u)=

{
KGm=KLmG0; m¿0; G0 ∈ ℵJ (M) ;
JGm= JLm+1G−1; m¡ 0; G−1 ∈ ℵK (M̃) ;

(4)

are called the hierarchies of GNLEEs associated with Eq. (1). In Eq. (4), L= J−1K .
Let G=(G(1); : : : ; G(l))T be an arbitary given vector function. We establish a key

operator equation with regard to the operator V =V (G):

[V; L] =L∗(KG)L� − L∗(JG)L� ; (5)

where [· ; ·] is the commutator, �; � ∈R are two �xed constants, and �¿�.
Suppose ℵJ (M) 6= ∅, ℵK (M̃) 6= ∅, L∗ is injective, and for any Gj =LjG0, j¿0

or Gj =Lj+1G−1, j¡ 0, the operator equation (5) possesses the operator solution
V =V (Gj). Then the hierarchies of GNLEEs (4) have the following form of Lax
representations (�= �− �¿0):

Ltm = [Wm; L] +ML(m+1)�; m=0; 1; 2; : : : ;

Ltm = [Wm; L] + M̃Lm�; m= − 1;−2;−3; : : : ; (6)

where the operator Wm is de�ned by

Wm=




∑m
j= 0V (Gj)L

(m−j)�−�; m¿0 ;

−∑−1
j=mV (Gj)L

(m−j)�−�; m¡ 0 :
(7)

Eq. (6) is called the generalized Lax representations (GLR) of Eq. (4).
From Eq. (6), we immediately know that the hierarchies of positive order GNLEEs

utm =Xm(u) (m=0; 1; 2; : : :) and the hierarchies of negative order GNLEEs utm =Xm(u)
(m=−1;−2;−3; : : :) are the integrability condition of the following two linear problem:

Ly= �y; �tmy= �
(m+1)�My ;

ytm =Wmy=
m∑
j= 0

V (Gj)L(m−j)�−�y ; m¿0
(8)

and
Ly = �y; �tmy= �

m�M̃y ;

ytm = Wmy= −
−1∑
j=m

V (Gj)L(m−j)�−�y ; m¡ 0 ; (9)

respectively, where M =M (tm), M̃ = M̃ (tm) only depend on the time variable tm.

Remark: 1. If one chooses M =0, M̃ =0; then �tm =0. Right now, Eq. (4) becomes
an isospectral hierarchy and has the standard Lax pair Ly= �y and ytm =Wmy, m ∈
Z . If one lets M = IN×N , M̃ = IN×N , and ℵJ (M) 6= ∅, ℵK (M̃) 6= ∅, then �tm = �(m+1)�,
m¿0; �tm = �

m�, m¡ 0, and (4) expresses a non-isospectral hierarchy and has the
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standard Lax pair Ly= �y (�tm = �
(m+1)�, m¿0; �tm = �

m�, m¡ 0) and ytm =Wmy. By
the arbitariness of M and M̃ , all possible hierarchies of NLEEs associated with the
spectral problem (1) and their GLR are uni�ed in Eqs. (4) and (6), respectively.
Because of this, Eq. (4) is called ‘the hierarchies of GNLEEs’.
2. In the GLR (6), let m=0, then as �=1, and Eq. (6) becomes Lt0 = [W0; L]+ML

which is exactly the L–A–B triad representation of integrable system presented by
Manakov [26]. Thus, by using our e�ective procedure and GLR as described above,
through choosing many di�erent operators M , we may seek for the L–A–B representa-
tions of many integrable NLEEs. The algebraic structure of L–A–B representation was
discussed in Ref. [27]. Naturally, we may study the algebraic structure corresponding
to (6), which will be reported in another paper [28].
3. For a concrete spectral operator L, injection of L∗ and the conditions ℵJ (M) 6= ∅

and ℵK (M̃) 6= ∅ can be easily tested. Hence, in order to obtain the GLR of Eq. (4),
its key lies in looking for the operator solution V =V (G) of operator equation (5).
As �=0, �=1, and �= � − 1, the solution structures of Eq. (5) were studied in
Refs. [ 29–31] and Ref. [32], respectively. But for general �; �∈R, this problem is
still open.

In the following, we �rst derive the hierarchies of GNLEEs associated with the
Harry–Dym spectral problem, give the corresponding GLR through solving a key op-
erator equation, and then present some new integrable evolution equations and discuss
their GLR.
Consider the spectral problem (a special case of the WKI spectral problem [33])

yx =
(−i� (u− 1)�

−� i�

)
y ; (10)

with y=(y1; y2)T , i2 = − 1.
Evidently, Eq. (10) is equivalent to the following spectral problem

Ly= �y; L= L(u)=
1
u

(
i 1− u
1 −i

)
@; @=

@
@x
; (11)

where the potential u decays at in�nity or satis�es the periodic condition: u(x +
T )= u(x), T =const.
The spectral gradient ∇u�= ��=�u is

∇u�= �y22 : (12)

According to the relation @−1u@y22 = 2iy1y2 + y
2
2 − y21 and Eq. (10), only choosing

the following operators K; J

K = @3; J = − 2(@u+ u@) (13)

as the pair of Lenard’s operators of Eq. (10), we have

K∇u�= �2 · J∇u� : (14)
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The Gateaux derivative operator L∗(�) of Eq. (11) in the direction � is

L∗(�)=
�
u2

(−i −1
−1 i

)
@=

�
u

(
0 −i
0 −1

)
L : (15)

Obviously, L∗(�)= 0⇔ �=0.
Let A=A(tm), B=B(tm) be two arbitary given smooth functions of tm, and they are

independent of x. If and only if we choose

M =A
(
0 i
0 1

)
L; M̃ =B

(
0 −i
0 −1

)
L ; (16)

the operator equations L∗(JG0)=M , L∗(KG−1)= M̃ have the solutions

G0 = 1
4u

−1=2@−1u−1=2A; G−1 = @−3uB; @@−1 = @−1@=1 ; (17)

respectively. Thus, the Lenard’s recursive sequence {Gj}∞j=−∞ is determined by

Gj+1 =LGj =Lj+1( 14u
−1=2@−1u−1=2A); j=0; 1; 2; : : : ;

Gj−1 =LGj =Lj(@−3uB); j= − 1;−2;−3; : : : ;
(18)

where the recursion operator L= J−1K = − 1
4u

−1=2@−1u−1=2@3. The vector �elds

Xm(u)=

{
KGm=KLm( 14u

−1=2@−1u−1=2A); m¿0 ;

JGm= JLm+1(@−3uB); m¡ 0 ;
(19)

yield the hierarchies of GNLEEs of Eq. (10)

utm =Xm(u)=

{
KGm=KLm( 14u

−1=2@−1u−1=2A); m¿0 ;

JGm= JLm+1(@−3uB); m¡ 0 :
(20)

Let G=G(x; t; u) be an arbitrary given smooth function. For the spectral problem
(10), we consider the following operator equation:

[V; L] =L∗(KG)L−1 − L∗(JG)L (21)

which corresponds to choosing �= − 1, �=1 in Eq. (5). In Eq. (21),

L−1 =
(−i@−1 @−1(u− 1)

−@−1 i@−1

)
(22)

is the inverse operator of L. Then through calculating the commutator [V; L] =VL −
LV = −W−1V0x+(V0−W−1V0W −W−1V1x)L+(V1−W−1V1W −W−1V2x)L2 +(V2−
W−1V2W )L3, we obtain the following result:
Let L, K , J and L∗ be de�ned by Eqs. (11), (13) and (15), respectively. Then Eq.

(21) possesses the operator solution as below

V =V (G)=Gxx

(
0 1
0 0

)
+ Gx

(
1 −2i
0 −1

)
L+ 2G

(−i u− 1
−1 i

)
L2 : (23)



382 Z. Qiao / Physica A 252 (1998) 377–387

So, for the spectral problem (10) the hierarchies of GNLEEs (20) possess the fol-
lowing GLR:

Ltm = [Wm; L] +
(
0 iA
0 A

)
L2m+3; m¿0 ;

Ltm = [Wm; L] +
(
0 −iB
0 −B

)
L2m+1; m¡ 0 ; (24)

Wm=




∑m
j= 0V (Gj)L

2(m−j)+1; m¿0 ;

−∑−1
j=mV (Gj)L

2(m−j)−1; m¡ 0 ;
(25)

where V (Gj) is the formula (23) with G=Gj (Gj is the Lenard’s recursive sequence
(18) or (18)’).
Several special cases of Eqs. (20) and (24) (or (24)’) are displayed as follows:
(i) Set A=0, @−10= 4, then M =0 and G0 = u−1=2 ∈ ℵJ (0): Thus for m¿0, (20)

expresses the positive order NLEEs (i.e. the higher-order isospectral (�t =0) hierarchy
of Eq. (10))

utm =KL
mu−1=2; m¿0 ; (26)

which possess the Lax representations: Ltm = [Wm; L]; Wm=
∑m

j= 0 V (Gj)L
2(m−j)+1.

As m=0, Eq. (26) becomes the well-known Harry–Dym equation:

ut0 = (u
−1=2)xxx ; (27)

which has the Lax representation

Lt0 = [W0; L] ; (28)

with

W0 = (u−1=2)xx

(
0 1
0 0

)
L+(u−1=2)x

(
1 −2i
0 −1

)
L2 +2u−1=2

(−i u− 1
−1 i

)
L3 ;

L=
1
u

(
i 1− u
1 −i

)
@ :

Hence, Eq. (26) gives the Harry–Dym hierarchy of NLEEs.
(ii) Set B=0, then M̃ =0 and G−1 = ax2 + bx + c ∈ ℵK (0), ∀a; b; c∈C. Thus,

for m¡ 0, Eq. (20) reads the negative order NLEEs (i.e. the lower-order isospectral
(�t =0) hierarchy of Eq. (10))

utm = JL
m+1(ax2 + bx + c); m¡ 0 ; (29)

which have the Lax representations Ltm = [Wm; L] with Wm= −∑−1
j=m V (Gj)L

2(m−j)−1,
m¡ 0.
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As m= − 1, Eq. (29) becomes a variant-coe�cient linear ordinary di�erential equa-
tion:

ut−1 = − 2(ax2 + bx + c)ux − 4(2ax + b)u (30)

which is very easily solved and has the Lax representation

Lt−1 = [W−1; L] ; (31)

W−1 = − 2a
(
0 1
0 0

)
L−1 − 2(ax + b)

(
1 −2i
0 −1

)

−2(ax2 + bx + c)
(
i u− 1
−1 i

)
L :

As m= −2, through discussing Eq. (29) in the following cases we can obtain some
new integrable NLEEs such as Eqs. (32), (34), (36), which can be possibly applied
in theoretical and experimental physics.
(a) Choose a= b=0, then

G−1 = c; G−2 =L−1G−1 = − 2c@−2u; JL−1G−1 = 4c(ux@−2u+ 2u@−1u) :

Order u= vxx, then Eq. (29) is changed as

vxxt−2 = 4c(vxxxv+ 2vxxvx) ; (32)

which possesses the Lax representation

Lt−2 = [W−2; L] ; (33)

W−2 =− 2c
(
i 1
1 −i

)
L−1+2cvx

(
1 −2i
0 −1

)
+4cv

(−i vxx − 1
−1 i

)
L ;

L=
1
vxx

(
i 1− vxx
1 i

)
@ :

(b) Choose a= c=0, then

G−1 = bx; G−2 =L−1G−1 = − 2b(@−2xu+ @−3u) ;

JL−1G−1 = 4b(ux@−2(xu) + 2u@−1(xu) + ux@−3u+ 2u@−2u) :

Order u= vxxx, then Eq. (29) becomes

vxxxt−2 = 4b(vxxxx(xvx − v) + 2xvxxvxxx) ; (34)
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which has the Lax representation

Lt−2 = [W−2; L] ; (35)

W−2 = − b
(
1 −2i
0 −1

)
L−2 + 2b

(
ix vxx + x
x −ix

)
L−1

+ 2bvxx

(
1 −2i
0 −1

)
+ 4b(xvx − v)

(−i vxxx − 1
−1 i

)
L ;

L=
1
vxxx

(
i 1− vxxx
1 −i

)
@ :

(c) Choose b= c=0, then

G−1 = ax2; G−2 =L−1G−1 = − 2a(@−2(x2u) + 2@−3(xu)) ;

JL−1G−1 = 4a(ux@−2(x2u) + 2u@−1(x2u) + 2ux@−3(xu) + 4u@−2(xu)) :

Order u= vxxx=x, then Eq. (29) reads

vxxxt−2 = 4a(vxxxvx + xvxxxxvx + 2xvxxxvxx) (36)

which possesses the Lax representation

Lt−2 = [W−2; L] ; (37)

W−2 = − 2a
(
0 1
0 0

)
L−3 − 2ax

(
1 −2i
0 −1

)
L−2 + 2a

(
ix2 2vxx + x2

x2 −ix2
)
L−1

+ 2a(vx + xvxx)
(
1 −2i
0 −1

)
+ 4avx

(−ix vxxx − x
x ix

)
L ;

L=
x
vxxx

(
i 1− vxxx

x
1 −i

)
@ :

(iii) Set A=A(tm) 6=0, A(tm) is an arbitary di�erential function of tm. Then

M =A(tm)
(
0 i
0 1

)
L ;

G0 = 1
4A(tm)u

−1=2@−1u−1=2; Gj = 1
4A(tm)L

ju−1=2@−1u−1=2; j=0; 1; 2; : : : :

For m¿0, Eq. (20) reads the positive order NLEEs

utm =
1
4A(tm)KL

mu−1=2@−1u−1=2; m¿0 ; (38)

which correspond to the non-isospectral case �tm =A(tm)�
2m+3 of Eq. (10) and possess

the following GLR

Ltm = [Wm; L] + A(tm)
(
0 i
0 1

)
L2m+3; m¿0 ; (39)
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Wm =
m∑
j= 0

{
Gj;xx

(
0 1
0 0

)
+ Gj; x

(
1 −2i
0 −1

)
L

+2Gj

(−i u− 1
−1 i

)
L2
}
L2(m−j)+1 :

A representative equation of Eq. (38) is

ut0 =
1
4A(t0)[(u

−1=2)xxx@−1u−1=2 + 4(u−1=2)xxu−1=2 + 3(u−1=2)2x] ; (40)

which can be reduced to

vxt0 = − 1
8A(t0)(vxxxxv

2
xv+ 4vxxxv

4
x + 3v

2
xxv

3
x) (41)

via the transformation @−1u−1=2 = v. Eq. (41) is a new integrable nonlinear evolution
equation and has the GLR

Lt0 = [W0; L] + A(t0)
(
0 i
0 1

)
L3 ; (42)

W0 =
1
4
A(t0)(vxxxv+ 3vxxvx)

(
0 1
0 0

)
L+

1
4
A(t0)(vxx + v2x)

(
1 −2i
0 −1

)
L2

+
1
2
A(t0)vxv

(−i u− 1
−1 i

)
L3 ;

L= v2x

(
i 1− v−2x
1 −i

)
@ :

(iv) Set B=B(tm) 6=0, B(tm) is an arbitrary di�erential function of tm. Then

M̃ =B(tm)
(
0 −i
0 −1

)
L ;

G−1 =B(tm)@−3u; Gj−1 =B(tm)Lj@−3u; j¡ 0 :

For m¡ 0, Eq. (20) reads the negative order NLEEs

utm =B(tm)JL
m+1@−3u; m¡ 0 ; (43)

which correspond to the non-isospectral case �tm =B(tm)�
2m+1 (m¡ 0) of (10).

As m= − 1, Eq. (43) reads

ut−1 = − 2B(t−1)(2u@−2u+ ux@−3u) (44)

which can be changed to

vxxxt−1 = − 2B(t−1)(2vxxxvx + vxxxxv) (45)
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via the transformation u= vxxx. Eq. (45) is also a new integrable NLEE, and possesses
the GLR

Lt−1 = [W−1; L] + B(t−1)
(
0 −i
0 −1

)
L−1 ; (46)

W−1 = B(t−1)vxx

(
0 1
0 0

)
L−1 + B(t−1)vx

(
1 −2i
0 −1

)

+2B(t−1)v
(−i u− 1
−1 i

)
L ;

L=
1
vxxx

(
i 1− vxxx
1 −i

)
@ :

Finally, through some investigations it has been found that this kind of GNLEEs and
GLR can connect with the well-known r-matrix in 1 + 1 or 1 + d (d¿1) dimensional
spaces, which is written in Ref. [34]. Additionally, by making use of GNLEEs and
GLR we may also generate the Lie algebraic structure of operator related to stationary
systems, which has been established in Ref. [16].
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