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Abstract 

An approach for obtaining a new Lax pair from a given old Lax pair is proposed, and two 
hierarchies of nonlinear evolution equations, which include the well-known sine-Gordon and 
sinh-Gordon equation, are presented in this article. By the use of the general structure of 
commutator representations, the Lax representations of the two new hierarchies are obtained. 
Particularly, the new Lax pairs of the sine-Gordon and sinh-Gordon equation are given. All of 
these Lax representations are of operator form. 

1. Introduction 

The sine-Gordon equation (SEGE) 

ux, = sin u (1) 

and s inh-Gordon equation (SHGE) 

u,. = sh u (2) 

are of considerable significance both in mathematics and in physics. Eq. (1) is the 
prototype of an integrable nonlinear equation in that it can be solved via the inverse 
scattering transformation [1]. Also, it has solitons, multisolitons, breathers 
quasiperiodic, ~t pulse and similarity solutions, and other properties of integrable 
nonlinear evolution equations (NLEEs) [2]. The SEGE (1) has a long history that 
begins in the latter part  of the 19th century when this equation was found to occur in 
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differential geometry [3], and has attracted a lot of attention. Some particular 
solutions of this equation were successively obtained in the past decades [4-8]. 
Among various techniques for getting these solutions there are the method of 
Backlund transformations [9-12], the method of expressing them as functions 
of the independent variables [2] ~ = a x  + t / a  and q = a x -  t / a  in the form 
u(~, ~/) = 4 tan-1 [ U ( ¢ ) / V ( q ) ] ,  and the method of inverse scattering transformations 
[1]. All of these facts are very interesting. 

It is well-known that the SEGE (1) processes the following Lax pair [13] (called the 
old Lax pair of Eq. (1)) 

(4 -½uA 
Yx = ½ux - 2 JY (spatial part),  (3)1 

= l ( c o s u  s inu]  
Y' 42 \ s inu  - c o s u / y  (time part). (3)2 

The spatial part (3)1 is exactly the special case of the Zakharov-Shabat [14] eigen- 
value problem 

with the potentials q = - r = - ½u~. So, the SEGE (1) is a particular equation of the 
AKNS hierarchy [15] with the specific potentials q = - r = - ½u~. In Ref. [16], it 
was pointed out that the SEGE (1) is not an evolution, there exists the recursion 
operator with it, and the flows ut = ~ k ( u x ) ,  k = O, 1, 2, . . . ,  ~ = D 2 + u 2 - u x D -  a uxx,  

D = t3/Ox, are small symmetries of it. In Refs. [17,18], the authors gave a Lax pair of 
the SEGE (1) and SHGE (2) by making use of the chiral field hierarchy and the chiral 
field spectral problem. Afterwards, the author of Ref. [19] presented the sine-Gordon 
and sinh-Gordon equation via some transformation by virtue of the so-called inverse 
of the recursion operator • = 0 2 - 4 u  2 - 4 u x D - l u ( D - 1 D  = D D  - 1  = 1). In recent 
years, Capel, Nijhoff and their colaborators have achieved a series of developments 
(e.g., integrable mapping, Miura transformation, r-matrices, similarity reductions, 
etc.) in the field of integrable lattice systems such as discrete KdV, MKdV, KP, MKP, 
Calogero-Moser, Ruijsenaars-Schneider models, etc. [20,21-24]. The main methods 
they adopted is the versions of integrable discretizations in the time part of the 
integrable models, which is called the time discretization of of integrable model by 
them [21]. 

Motivated by their time-discrete versions of integrable systems, in the present 
articles we shall consider the time part of Lax representations for the continuous 
integrable equations. Concertely speaking, the paper is organized as follows. In the 
next section, first starting from the time part (3)1 of the old Lax pair and viewing it as 
a new eigenvalue problem, we shall give a new hierarchy of NLEEs (called the 
sine-Gordon hierarchy) whose first equation is the well-known SEGE (1). Then, by 
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virtue of the general structure of commutator representations [-25,26], we construct 
the Lax representations of the sine-Gordon hierarchy. Particularly, a new Lax pair of 
the SEGE (1) is given. In Section 3, by the use of the procedure which is similar to 
Section 2, another new hierarchy of NLEEs (called the sinh-Gordon hierarchy) 
containing the SHGE (2) is found, and the Lax representations are established. 
Additionally, a new Lax pair of the SHGE (2) is also obtained. All of these Lax 
representations are of operator form. In the last section, we give some discussions and 
explanations of the method proposed in this article. 

2. The sine-Gordon hierarchy, Lax representations and a new Lax pair of SEGE (1) 

2.1. Generation o f  the sine-Gordon hierarchy 

We view Eq. (3)2 as a new eigenvalue problem and rewrite it as 

1 (cos u sin u'~ 
Yx = 4-2\sinu - cos u ) y ' 

(4) 

where 2 is an eigenparameter, u is a scalar function, y = (y 1, y2)T. It is easy to calculate 
the spectral gradient 62/6u of the eigenparameter 2 with respect to the potential 
function u 

62/6u = (42)- 1 (y2 _ y2) cos u - 2yl Y2 sin u), (5) 

where Yl, Y2 satisfy Eq. (4). 
Following the ideas of the general procedure for producing the hierarchy of NLEEs 

(nonlinear evolution equations) and obtaining Lax representations in Ref. [25]. Now, 
we are going to look for pair of the so-called Lenard's operators K = K(u) and 
J = J(u) satisfy 

K 6 2 / f u  = 2 -  2 J62/6u .  (6) 

Noticing the relations 

-- ½(y~ + y~).  = 62/6u,  

½(Yl z -- Y~)x = (42)- 1 (Y~ + y22)cosu, 

(Yl Y2)= = (42)- 1 (yZ + y22) sin u,  (7) 

we only chose the pair of Lenard's operators K, J as 

K = 0  -1 , J=¼(t3 - l c o s u o - l c O s u o  -1 + O - X s i n u O - l s i n u O - 1 ) ,  

a = O / O x ,  0 - 1 0 = 0 ~ - 1 = 1 ,  (8) 

then Eq. (6) holds. Obviously, K and J are two skew-symmetric operators. 
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Choose  G-1  = 0 ~ KerK, define the Lenard ' s  recursive sequence {Gi}7=%1 as 

follows 

G j_ 1 = L,e Gi, ~ & K 1 j = 1 (cos uO- 1 cos u d -  1 + sin u d -  1 sin u d -  1 ), 

j -- - 1, - 2 . . . . .  (9) 

The  vector  fields X., & JG,,(m = - 1, - 2, ... ) p roduce  a new h ierarchy  of  N L E E s :  

u, m = x m ( u ) ,  m = -  1, - 2 , . . . .  (10) 

As m = - l ,  let t = t  1, U 1 0 = 0 ,  0 l c o s u 0  1 0 = a ( t )  and  0 asinu3-10=fl(t), 
then Eq. (10) reads  

u, = X _ l ( U )  = JG-1 = ¼0 l ( a ( t ) c o s u  + f l ( t )s in u), (11) 

where ~(t) and  fl(t) are two a rb i t r a ry  smoo th  scalar  functions.  Set ~ ( t ) =  0 and 

fl(t) = 4, then Eq. (11) exact ly  becomes the wel l -known S E G E  (1). F o r  tha t  reason,  

X,, = JGm (m = - 1, - 2 . . . .  ) are called the S G  vector  fields, and  the hierarchy 
Eq. (10) is called the sine-Gordon hierarchy of  N L E E s .  

2.2. Lax representations of the sine-Gordon hierarchy (1 O) 

Rewrite  Eq. (4) as 

L y = 2 _ l y  ' L = L ( u ) = 4 ( c o s u  s inu  ~& 
k s i n u  - c o s u /  0 = O/Ox. (12) 

Apparen t ly ,  we have 

Proposition 1. 

~i) 
I2×20 = ¼WL, (13) 

where 

°1) = cosu s nu) ,14, 
I2×2 = , W k s i n u  - c o s u  " 

(ii) The  G a t e a u  der ivat ive  o p e r a t o r  [27] L , ( ~ )  of  the spectral  o p e r a t o r  L = L(u) in 

the di rect ion ~ is 

= ~ L(u + el) = L .  (15) 

(iii) L ,  is an injective h o m o m o r p h i s m ,  i.e. 

L , ( ~ ) = O , ~ = O ,  L,(a~ +bq)=aL,(~)+bL,(q) ,  Va, b e R .  



Z Qiao/Physica A 243 H997) 141-151 145 

In order to construct the Lax representations of the sine-Gordon hierarchy (10), 
according to the frame structure of commutator representations 1-25, 26] we consider 
the following operator equation of V = V(G): 

IV ,  L] = L , ( K G ) L  -1 - L , (  J G ) L  , (16) 

where G is an arbitrary smooth function; [., .] stands for the commutator; K, J, L and 
L,  are expressed by Eqs. (8), (12) and (15), respectively. 

Theorem 1. Let G be an arbitrary given smooth function. Let K, J, and L,  be defined 
by Eqs. (8) and (15), respectively. Then, for the spectral problem (12) the operator 
equation (10) possesses the following operator solution: 

1 ( -  O-lsinua-~G -- 63-' COSUO-1 G) 
V = V ( G ) = ~  0_lcosuO_IG O_lsinu~3_lG 

- ~ ( d - l c o s u O - l c o s u U 1 G  + O - l s i n u O - l s i n u O - l G ) ( O 1  

Proo f  Set 

x f _ O _ l s i n u O _ l G  O - l c o s u a - l G ' ~  

V o = 7~ ~ O_ l cos uO_ X G O_ l sin u~_ l G ) , 

V1 _ 1 (~-1  cos t/~ -1  cos uO -1 G ~- ~- 1 sin uO -1 sin U0 - 1 G ) ( O  

/ 

\ 1 

,o), 
(17) 

(18) 

Then the commutator [V,L] of V = V(G) = Vo + V 1 L  and L is 

[ V , L ] =  - 4 W V o x  + ( V o -  W V o W - 4 W V I x ) L  + ( V ~ -  W V 1 W ) L  z. (19) 

Substituting Eqs. (18) and (14) into Eq. (19), and calculating it, we find 

Vo - W V o W  - 4 W V l x  = O, 

- 4 W V o .  = L . ( K G ) L  -1 , 

VI - W V 1 W  = - L . (  J G ) L  -1 , (20) 

which completes the proof Theorem 1. [] 

Theorem 2. Let {Gi}f_-% ~ be defined by the Lenard's recursive sequence (9). Then the 
sine-Gordon hierarchy (10), has the Lax representations (operator form) 

L,.. = [W, . ,L ] ,  m = - l,  - 2  . . . . .  
(21) 

Wm -- ~ V ( G j ) L  2(m-j)-1,  
j=ra 

where V(G~) is the expression (17) with G = Gj. 
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Proof  On one hand, Lt,, = L.(ut,~). On the other  hand, 

I [W,, , ,L] = - V(Gj)L2~r"-J)-I ,L = - ~ [ V ( G j ) , L ] L  2(m-j)-1 
j=m j=ra 

- 1  

= _ ~ ( L , ( K G j ) L  2(m-j-1) _ L2,(m-J)) 
j=m 

= L, ( JGm)  - L , ( K G _ I ) L  TM = L , ( X m ) .  

(iii) of Proposition 1 
Hence, Ltm = [ W m , L ]  ¢¢, L,(u,m) = L , ( X m )  < > ut,, = Xm. [] 

2.3. A new Lax pair o f  SEGE (1) 

In Theorem 2 letting m = - 1 and t_ 1 = t, then according to Eqs. (11) and (17) we 
can obtain a new Lax pair (operator  form) of the S E G E  (1). 

Proposition 2. S E G E  (1) possesses the following Lax representation: 

L, = [ W _  I , L  ] , (22) 

where the operators  L and W 1 are 

( c o s u  s i n u ~  3 
L = L ( u ) = 4 \ s i n u  - - c o s u /  ' 

W - l = - V ( G _ I ) L  1 = ~ ( ~  lcOSu 
- 1 s in  u + 2 (~ 1 s i n  u) 

(23)i 

- 1 sin u - 2(t3-1 sin u)'~ 

~ -  1 COS/2 / 

(23)2 

here (t3- t sin u) is a function (i.e, (t3-1 sin u ) f = f ( O -  1 sin u), for an arbi t rary function f ) ,  
and t3-1 cos u, t3-1 sin u are the two operators (i.e, ~-  1 cos u f  = t3 - 1 ( f co s  u), a -  1 sin u f  = 

t3-1 ( f s i n  u), for an arbi t rary function f ) .  

Proof. Substituting Eqs. (23)1 and (23)2 into Eq. (22), we can know that  Eq. (22) is 
equivalent to Eq. (1) through a lengthy calculations. [] 

Remark 1. Eqs. (23)1 and (23)2 can be considered to generate the non- 
linearized integrable systems [28] of SEGE (1) under  some constraints between 
the potential  function u and the eigenfunction vector y of Eq. (4), which is in 
organization. 
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3. The sinh-Gordon hierarchy, Lax representations and a new Lax pair of SHGE (2) 

It has been known that the SHGE (2) is associated with the following Lax pair [13] 
(called the old Lax pair of Eq. (2)) 

(2 -½u / 
yx = !y  (spatial part) ,  (24)1 

2 Ux J 

1 chu  - s h u )  
(time 

Y' = ~ \ sh u ch u] y 
part) .  (24)2 

In this section, for Eq. (24)2 we continue to use the procedure which is analogous to 
Section 2, produce the so-called sinh-Gordon hierarchy, and gives its Lax representa- 

tions and the new Lax pair of the S H G E  (2). Thus, we change Eq. (24)2 as the 
following spectral problem: 

1 ( c h u  - shu'~ 
Yx = ¥~ \ s h u  c h u )  y" (25) 

We easily calculate the following results: 

62/6u = (42)-1( - (y~ + yZ)ch u - 2yly2 shu) ,  (26) 

Kr~2/6u = 2-  2 J62/6,  (27) 

where the pair of Lenard's operators K, J are the two skew-symmetric operators 

K = 0 -1 ,  J = l ( O - l c h u ~ - l c h u O - 1  - O-lshu~3-1shuO-1),  

O=O/Ox, 0 0 - 1 = 0 - 1 c 3 = 1 .  (28) 

The Lenards's sequence {Gj}f= ~_ 1 are recursively defined by 

G ~ _ I = ~ G j ,  G _ l = O e K e r K ,  j = - l ,  - 2  . . . .  , 

= K - 1 j = ¼ (ch u#-  1 ch uO - 1 _ sh uO- 1 sh ua -  1 ). (29) 

Here, we make the convention: 0 -10  = 0, ~-  1 ch uO- 10 = ~(t), O- 1 sh uO- 10 = 6(0 
(y(t), 6(t) are two arbitrary functions). Then we can produce the sinh-Gordon hierarchy 
of NLEEs  as follows: 

Utm = Xm(U ) = JGm, m = -- 1, -- 2 . . . . .  (30) 

with the representative equation 

u,. = X_~(u) = ¼ O - ~ ( V ( t ) c h u -  6(t)shu), t = t-1 (31) 
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which can become the well-known SEGE (2) as 7(t) = 0, 6(t) = - 4. Eq. (25) reads 

( c h u  - shu'] 
L y = 2 - 1 y ,  L=4JflO, ~ r = \ s h u  c h u } '  (32) 

Hence, 

and L ,  is injective. 

Theorem 3. Let G be an arbitrary given smooth function. For  the spectral problem 
(32), we consider the operator equation of V = V(G) generated by Eqs. (28) and (33) 

[V,L ] = L , ( K  G)L -1 - L , (  JG)L . (34) 

Then Eq. (34) has the operators solution 

1 ( ~  l shu~ 1G - ~  lchut3 1G'~ 
V =  V ( G ) = ~  O_achuO_~G O_~shuO_~G j 

_ 1 ~ _  1 ( c h  u ~  - 1 c h  u - s h  uO - 1 s h  u)~? - x G L ( 3 5 )  
8 0 " 

Theorem 4. Let {G~}f= ~ 1 be defined by Eq. (29). Then the sinh-Gordon hierarchy (30) 
possesses the Lax representations (operator form) 

L t , , = [ W , , , L ] , m = - I ,  - 2 , . . . ,  

W,, = - ~ 1 V(Gj)L2(m_j)_I (36) j=m 

where V(Gj) is the expression (35) with G = Gj, and L is determined by Eq. (32). 
As m = - 1, setting t-1 = t, we get 

Proposition 3. The SHGE (2) has the following new Lax representation 

L , = [ W  1 ,L] ,  

where the operator L and W_ 1 are 

chu - s h u )  
L = 4 \ s h u  chuJ ~' 

1 ( ~ - l c h u  
W - l = -  V ( G - 1 ) L - I = ~  _ g  l s h u + 2 ( ~ ? _ l s h u  ) 

(37) 

(38)1 

- 0  l s h u + 2 ( 0 - 1 s h u ) )  
~-1 chu 

(38)2 
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where (d- 1 sh u) is a function (i.e. (a- 1 sh u ) f  = f ( O -  1 sh u), for an arbitrary function f) ,  
and 0-1 ch u O - 1 sh u are the two operators (i.e. O - 1 ch u f = ~- 1 ( f ch  u), O- 1 sh u f  = 

t3-1 ( f sh  u), for an arbitrary function f) .  

Proof. Direct calculations. [] 

Remark 2. Eqs. (38)1 and (38)2 can be considered to generate the nonlinearized 
integrable system [28] of SEHE (2) under some constraints between the potential 
function u and the eigenfunction vector y of Eq. (25), which can be developed. 

4. Discussion and explanation 

1. In this article, following the example of SEGE (1) and SHGE (2), we present 
a kind of method on how to generate a new hierarchy of NLEEs and obtain new Lax 
pair from the old Lax pair. The spatial part of new Lax pair is actually given by the 
time part of old Lax pair (see Eqs. (23)1 and (3)2, Eqs. (38)1 and (24)2). The time part of 
new Lax pair is different from the spatial part of old Lax pair (see Eqs. (23)2 and (3)1, 
Eqs. (38)2 and (24)1). Denote the old Lax pair by Lo, Mo, new Lax pair by L1, M1 
(here L1 = Mo). Then from L~ and M1, in light of the method descripted as above, we 
can further obtain another new Lax pair L2, M2 (L2 = M~ )? For the sine-Gordon and 
sinh-Gordon equation, the answer is "No" (because the associated spectral gradient is 
very difficult to calculate). For other soliton equations, this problem is still open. 

2. The recursion operators L~' = K - 1 j (see Eqs. (9) and (29)) of the sine-Gordon 
and sinh-Gordon hierarchy are apparently either different from (/inequivalent to) the 

2 recursion operator ~ - - D  2 + U x - u x D  -1 - U x x  (D = d/8x) used in Ref. [16] or 
different from (/inequivalent to) the inverse operator of the recursion operator 
q~ = D 2 - 4u 2 - 4 u x D - ~ u  (D-~D = DD -~ = 1, D = 8/dx) presented in Ref. [19]. 
Additionally, the new Lax pairs (22) and (37) of SEGE (1) and SHGE (2) are 
different from (/inequivalent to) the Lax pairs obtained in Ref. [17] and Ref. [18], 
respectively, and Eqs. (22), (37) are simpler than the Lax pairs in Refs. [17,18] in their 
expressions. 

3. Because the Lenard's operators K, J (see Eqs. (8) and (28)) of the sine-Gordon 
and sinh-Gordon hierarchy are skew-symmetric, we may further induce the Hamil- 
tonian property of K, J, and prove that the sine-Gordon and sinh-Gordon hierarchy 
possess the bi-Hamiltonian attributes. 

4. The operators W,, = - y ,-  ~ V ( G j ) L  2(m-j)- 1 which are reckoned by solving an 
j=m 

operator equation according to the frame structure of commutator representations 
[25,26], are called the Lax operators [29]. We can prove that the Lax operators 
W,, compose an infinite-dimensional Lie operator algebra. 

5. The sine-Gordon and sinh-Gordon hierarchy obtained in this article are actually 
the second hierarchy [26, 1994] or the negative-order [30] of NLEEs related to 
Eqs. (4) and (25). It is well-known that, the "nonlinearization technique [31] of Lax pair" 
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is valid for much more soliton systems in finding completely integrable systems in the 
Liouville sense. However, in these famous soliton systems (such as KdV, MKdV, 
Bousinessq, etc.) discussed before, only the sine-Gordon and sinh-Gordon systems 
have not been considered. Now, we have obtained a new Lax representations (oper- 
ator form) of the sine-Gordon and sinh-Gordon hierarchy, then we hope that their 
nonlinearized systems and associated finite-dimensional completely integrable system 
are developed, which is in study. If that will do, then it is very likely to find a new 
approach for getting the exact solutions of sine-Gordon and sinh-Gordon hierarchy. 
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