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Abstract 

In this article, it is first given that a Lax representation in terms of 2 × 2 matrices for the 
completely integrable finite-dimensional Hamiltonian system (CIFHS) (H) produced through 
the nonlinearization procedure for the MKdV hierarchy, and then an associated non-dynamical 
modified r-matrix is constructed. By making use of this r-matrix and matrix trace equality, 
a set of finite-dimensional involutive functions Fm (m =0,  1,... ,F0 = H ) ,  which guarantees the 
integrability of Hamiltonian systems (H), and the Lax representations in terms of 2 x 2 matrices 
for the whole Hamitonian hierarchies (F=) (m =0,  1,...) are obtained. Moreover, the involutive 
solutions of the MKdV hierarchy are given. Finally, it is found that the Hamilton-Jacobi equation 
for the Hamiltonian system (H) can be separable under a group of new corrdinates introduced 
by the 2 x 2 Lax matrix. 

1. Introduction 

The modified Korteweg-de Vries (MKdV) equation is widely discussed in the litera- 

ture. It possesses the Lax pair [1], the soliton solution [1], bi-Hamiltonian structure [2] 

and other soliton properties such as Darboux transformation, B~icklund transformation 

and the Miura transformation between it and the famous KdV equation [3]. In recent 
years, the appearance o f  nonlinearization method [4,5] and constrained flows [6] brings 
out new vitality in soliton theory and integrable system theory, and with the help o f  

them many new completely integrable systems has been successively found [7-15].  
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Ref. [16] gave a description that the Lax pair of the MKdV hierarchy is nonlinearized 
as a set of commutative integrable Hamiltoninan systems under the so-called Bargmann 
constraint. In Ref. [17], we discussed the Neumann constraint of the MKdV hierarchy 
and the gauge transformation between the Neumann system and a completely integrable 
Hamiltonian system. 

This article is a continuation of the previous paper [17], i.e, the present work deals 
with a non-dynamical modified r-matrix, Poisson bracket and separation of variables 
for the completely integrable finite-dimensional Hamiltonian system (CIFHS) associated 
with the MKdV hierarchy. The investigation of CIFHS admitting a classical standard 
r-matrix Poisson structure was developed in the book of Faddeev and Takhtajan [18]. 
Recently, the study of CIFHS with the dynamical r-matrix (i.e. depending on dynam- 
ical canonical variables) and the separation of variables has received some attention 
[19-23]. It is a celebrated fact that the famous Calogero--Moser system, whose inte- 
grability was proved a number of years ago [24], has been found to possess a classical 
dynamical r-matrix [25]. Many CIFHS generated through the nonlinearization method 
are developed to have dynamical or non-dynamical r-matrix by several authors [26- 
28]. The r-matrix algebra is not only used as a main approach to finite-dimensional 
involutive systems [29,30], but also applied to the separation of variables of the inte- 
grable Hamiltonian systems [31,32]. 

The present article has been written to search for the non-dynamical r-matrix, sep- 
aration of variables for the MKdV hierarchy, and is organized as follows. 

In the next section we briefly recall the generation process of the MKdV hierarchy 
and Lax representations. 

In Section 3, for the nonlinearized system of the MKdV eigenvalue problem under 
the Bargrnann constraint, we derive its Hamiltonian function and Lax representation. 

In Section 4, the following typical non-dynamical r-matrix: 

2 2 
r 1 2 ( ~  , /A)  = ~ e - = S ,  u - , ~  # 0  0000 

0 1 0 0 1 0 
P =  S =  

1 0 ' 0 0 0 0 

0 0 0 0 0 0 

where 2, # are two parameters, are found. Obvoiusly, this non-dynamical r-matrix is 
more a term - (2 /# )S  than the standard r-matrix, which is called a modification of the 
standard r-matrix (2/(p - 2))P. Sometimes this kind of r-matrices structure are also 
recorded as R4-matrices [33] or rs-matrices [34] in the literature, but most of  these 
rs-matrices are usually dynamical [33,34]. The r-matrix and rs-matrix methods are the 
two effective ways to the Lie-Poisson structure [33,35], which provides fundamental 
commutator relations in the quantum inverse scattering [30]. The rs-bracket induced 
by the rs-matrices has a close connection with the common hierarchy of Lax equations 
induced by a Hamiltonian [33]. And the additional term matrix S(2, #) in rs-matrix can 



Z. QiaolPhysica A 243 (1997) 129-140 131 

be usually restricted to a common Poisson subspace for the rs-bracket (see Ref. [34, 

Theorem 3]). 
Additionally, in this section by making use of the modified r-matrix and matrix 

trace equality, a set of finite-dimensional involutive functions Fm (m = 0, 1 . . . . .  F0 = H),  
which guarantees the complete integrability of the nonlinearized system (i.e., 
Hamiltonian system (H))  of the MKdV eigenvalue problem, and the Lax representa- 
tions in terms of 2 x 2 matrices for the whole Hamiltonian hierarchies (F,n) (m = 0, 1 . . . .  ) 
are obtained. Furthermore, the involutive solutions of the well-known MKdV equation 
and the whole MKdV hierarchies are also given in this section. 

Section 5 deals with the aspects of separation of variables in the Hamilton-Jacobi 
equation for the Hamiltonian system (H). 

2. Background: MKdV hierarchy and Lax representations 

In this section, let us first recall the generation process of the MKdV hierarchy and 
Lax representations. Thus, we consider the MKdV spectral problem 

- 1  , ~k= ~02 ' (1) 

where 2 is a spectral parameter, q& = d~b/Sx. We can easily calculate the spectral 
gradient 62/6u of the eigenparameter 2 with respect to the scalar potential u 

62 
6uu = 2qJ1~/'2 • (2) 

Set 

d ,  
~ '~=- -  d2 -~ -u~- lud '  ~ = ~ x  d d - l = ~ - l ~ = l '  (3) 

then 62/6u satisfies 

6u 6u " (4) 

Choosing J =  t3, K =JZP = - ¼ d  3 +dug-tug as a pair of Lenard's operators, we define 
the Lenard's recursive sequence {Gj}j~=_I as follows: 

G _ ] = I E K e r J ,  Go=u, 
Gj=..~'Gj_I, j = l , 2  . . . . .  (5) 

which produces the well-known MKdV hierarchy 

utm =JGm =KG.,-1 =JSe"u, m =0,  1,2 . . . . .  (6) 

As m = 1, (6) becomes the famous MKdV equation 

1 ~U2Ux (7) Ufl ~ -- -~ ttxxx Jr- 
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Proposition 1. The MKdV hierarchy (6) possesses the Lax pair 

Gj x(½Gj_,,x+~-'uOaj_,)~_jO 
+~ laj_l,x-a-'uaaj_, -Gj / j = l  

In particular, the MKdV equation (7) has the Lax pair 

1 - u  I~, 

1 1 3 (9) ( ~ . _  ~.~ + : .  ~2 + ½~(Ux +.2) ]~ .  
~" \-~+½(,x-U 2) -,~u+¼,~-½u, J 

3. Nonlinearized system of (1), its Hamiltonian and Lax representation 

Let 21 . . . .  ,2N be N distinct spectral parameters. Consider the Bargmann constraint [5] 

' EYe, a;/au, i.e. Go = 

u =  ( p , q ) ,  (10) 

where p = (Pl . . . . .  pN)  r =-- (~t21 . . . . .  ~b2N)T,q = (ql . . . . .  qN) T =- (~11 . . . . .  ~IN)T; (', ') 
stands for the standard inner product in the Euclid space R 2N. Denote A = dia9(21 . . . . .  

2N), then under the Bargmann constraint (10) the nonlinearization of (1) gives a 
Hamiltonian system with N degrees of freedom 

aH 
qx = (P,q)q + A p =  - -  

t3p' (1l) 
OH 

p ~ =  - q  - (p ,q)  p =  aq 

with 

H =  ½(Ap, p) + ½(q,q) + ½(p,q)2.  (12) 

Proposition 2. Set 

- 1  - ( p , q )  ' 

( o 
M =  _2_1(1 + (P ,P ) )  + Z  2 - 2 j  \ p2 _ p j q j  0 j = l  

(13) 

(14) 
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where 2 ~ 0 is a spectral parameter. Then the Hamiltonian system (11) has the 2 x 2 
matrix Lax representation 

Mx=[U,M]. (15) 

Proof Calculate directly. [] 

The matrix M satisfying (15) is called the Lax matrix of Hamiltonian system (11). 

4. A modified non-dynamical r-matrix and finite-dimensional involutive systems 

M(2) = 

where 

It should be pointed out that the following non-dynamical r-matrix r12(2, p)  is more a 
term -(2/#)S (the expression of S is seen below) than the classical standard r-matrix 
( 2 / ( # -  2))P. Hence, it can be viewed as a modification of the classical standard 
r-matrix, and is both different from and inequivalent to the r-matrix, which is dynam- 
ical, see Ref. [21, (2.23), (2.24)]. 

Set 

(A(2)  B(2) ) 
C(2) -A(2) ' (16) 

N 
A(,Z ) = p s q J  

:=I 2--~ 2j ' (17a) 

N 

B(2)= 1 - Z 2---2j '  (17b) 
j=l 

: (17c) C ( 2 ) = - 2 - ' ( 1  + (P'P)) + Z 2--2:-" 
j=l 

Define the standard Poisson bracket {F, G} of two Hamiltonian functions F, G in the 
symplectic space (R2N, dp/x dq) as follows: 

N 

j=l apj dpj " 

Then, we have the following proposition. 

Proposition 3. For two free parameters 2 and #, the following Poisson brackets always 
holds: 

{A(X),A(#)} = {B(2),B(#)} ----- {C(2), C(#)} = 0, (19) 
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2 
{A(2), B(#)} = ~-Z-~(B(/2) - B(2)) ,  (20) 

.. 2~2--z(-C(/2) + C(2)) - 2C(2 ) ,  (21) {A(~), C(/2)} 
/2 

4 d 

{B(2), c(/2)} = 77--7(A(/2) - A(,~)) + - A ( 2 ) .  (22) 
- / 2  

Let M 1 ( 2 ) = M ( 2 ) ® I ,  M2(/2)=I ® M(/2), here I is the 2 × 2 unit matrix. Then it 
follows from (19)-(22)  that: 

Proposition 4. The Lax matrix M satisfies the following fundamental Poisson bracket: 

{M1(2),M2(/2)} = [rl2(d.,/2),M1(2)] -- [r21(/2, 2),M2(/2)], (23) 

where {M1(2),M2(/2)} is a 4 x 4 matrix [18] consisting of various Poisson brackets of 
the elements of M(2) = (mij(2))2 x 2 and M(/2) = (mij(#))2 x 2 

{Ml(dO, M2(/2)}jk, ln = {mjl(,:t),mkn(/2)}, jk, In = 11, 12,21,22, (24) 

and the r-matrix r12(2,/2) is given by 

2 p _ 2 s ,  r21(/2,2)=Pr12(2,/2)P (25) r12(2,/2) =/2 - 2 /2 

o o 

0 0 1 0 0 1 
P =  S =  . 

0 1 0 0 ' 0 0 

0 0 0 1 0 0 

Evidently, the r-matrix formula (25) depends only on the two constant parameters 
2,#, and has no relation to the dynamical canonical variables pj, qj ( j =  1 . . . . .  N). So, 
again from the beginning of this section we call Eq. (25) as a non-dynamical modified 
version of the classical standard r-matrix. 

By (23), we can immediately calculate 

{M2(2),M2(/2)} = [t:12(2,/2),M1 (2)1 - [~z2,(#, 2),M2(/2)], (26) 

where [19] 

l 1 

~:ij(2,/2)= Z ZM~-k(2)M~-I(/2)ro(2,/2)M~(2)Mt2(/2), i j=  12,21. (27) 
k--0 1=0 

From (26), we derive that 

4{TrM2(2), TrM2(/2)} = Tr{M2(2),M22(/2)} = 0. (28) 
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One obtains from (16) that 

N 2jej 
22 TrMZ(2) = - 2  + 2H + Z 2---~tj ' (29) 

j=l  

where H is defined by (12) and 

N 

Ej = 2 j g  + (p, p)q} + q~ - 2j Z (Pjqk - Pkqj)2 k=l,k¢j 2j--2k , j = 1 , 2  . . . . .  N .  (30) 

Due to (28) and (29), we can easily know 

{Ei,Ej} =0,  {H, Ej} =0,  Vi, j =  1,2 . . . . .  N .  (31) 

Hence, from the view point of modified non-dynamical r-matrix we have proved. 

Proposition 5. The Hamiltonian system (11) is completely integrable in the Liouville 
sense and its finite-dimensional involutive systems are {Ej}y= 1. 

Set 

~ 2 ~ E j ,  m =0,  1,2, (32) 
1 Fm=  . . . ,  

j=l  

then 

l(p,p)(Amq, q)+ff  zt p,p) Fm = ½ (Amq, q) + ff 1 (--m+l 

1 
2 ~ ((Aip'p)(AJq'q) - (Aip'q)(AJp'q))" (33) 

i+j=m 

Apparently, Fo=H, and by virtue of (31), {H, F0}=0 and {Fm,Ft}=O, Vm, l E Z  +. 
So, the whole Hamiltonian system 

OFm OFm 
(Fro): qtm-- Op' Ptm-- Oq' m = 0 , 1 , 2  . . . . .  to=x,  (34) 

are also completely integrable. 
Analogous to Proposition 2, we can also derive the Lax representations of the whole 

Hamiltonian systems (34). 

Proposition 6. The Hamiltonian systems (34) admit the 2 x 2-matrix Lax representa- 
tions 

Mtm = [v(m),M], m = 0 , 1 , 2  . . . .  , (35) 
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where M is the Lax matrix (14), and 

v(m)~_(Jtm(p,q) /tm+l / 
--2 m --2m(p,q) 

~-~ ( 2m-J(AJp'q) --2m-J+l(AJ-lq, q) ) 
+ _)m_j(AJp,  p) _2m_J(AJp, q) , m=O, 1,2 . . . . .  (36) 

j=l 

particularly point out V (°) = U. 

In addition, on the solutions of the MKdV hierarchy and famous MKdV equation 
we have 

Proposition 7. Let q(x, tin), p(x, tm) be the solution of commutative flow (H) and (Fro). 
Then u(x, tm)=-(q(x, tin), p(x, tin)) satisfies the higher-order MKdV equation (6): utm = 

1 JSymu (m = 0, 1,2 . . . .  ). In particular, the well-known MKdV equation ut. = -  ~ Uxxx + 
~U2Ux has the solution u(x, tl ) = (q(x, tl ), p(x, tl )), where q(x, tl ), p(x, tl ) are the solu- 
tions of commutative flow (H) and (F1). 

Proof  According to equalities (4), (5), (33), (34) and (11), through a lengthy calcu- 
lations it is known that Proposition 7 holds. [] 

5. Separation of variables 

Separation of variables in the Hamilton-Jacobi equation 

dW 
H(p l  . . . . .  PU,ql . . . . .  q n ) = E ,  P i=  9q~, i=  1 . . . . .  N (37) 

is an important method of solving the Liouville integrable systems of classical mechan- 
ics [36]. The separation of variables means the solution of partial differential equation 
(37) for the action function W in the following additives form: 

N 
W = E Wi(ui;Hl . . . . .  HN), HN : H ,  (38) 

i=1 

where ui ( i=  1,2 . . . . .  N) are called separation variables and the functions W/ ( i =  
1,2 . . . . .  N) depend only on their separation variables ui, i.e., the separation vari- 
ables [37,38] are comprehent in the given hierarchy of Hamiltonian systems as the 
construction of N pairs of canonical variables ui, vi, i = 1 . . . . .  N,  

{ui, uk} = {vi, vk} : 0 ,  {vi, uk} =r ik ,  (39) 
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and N functions Wi such that 

Wi(ui, l)i'~n 1 . . . .  ,HN)=O, i= 1 .. . . .  N ,  (40) 

where Hi are the involutive integrals of motion. Eq. (40) is referred to as the separation 
equation. 

Since the integrable systems (11) and (34) admit the 2 x 2-matrix Lax representa- 
tions (15) and (35), in order to separate the finite-dimensional integrable Hamiltonian 
systems (11) and (34) we need to introduce N pairs of new coordinates ui, vi: 

C(ui)=O, vi=lA(ui) ,  i = 1  . . . . .  N ,  (41) 

as the separation variables. 
Set 

RO.) N 1~2 ~ ( 4 2 )  
C ( A ) = - A - ' ( l + ( p , p ) ) +  Z 2 _ A y  S ( 2 ) '  

j = l  

where 

N N 

R(A)= H(A-uk), s(A): I-IA(A-&). 
k = l  j = l  

(43) 

Uk 

and by taking a residum at the pole Aj we obtain 

R(Aj) s'(Aj): as(A) ~:~J P): s,(#)' 

which reads 

u duk R( Aj ) auk _ g E uk - Aj ' 
2t~ dpj : S'(2j) k=~ uk - Aj k=l 

Suppose that 2j # 0 ( j  = 1 . . . . .  N)  and 21 < A 2 < " ' "  < AN, then we can chose N different 
zero points uj of C(A) such that [39] Aj_I <.uj<.Aj. From (42) we have 

N g 
---(11 + ( P ' P ) ) +  j : lZUk~AJ- -0 '  k = l , 2  . . . .  N ,  (44) 

N duk 

k=l 

Letting ~ = l  qJ" upon both sides of (47) and noticing (41), we have 

N N N N 
y~qjdpy= ½ ~-~pjqj~-'~ duk --~)-'~vkduk, 

U ; ~ j  
j = l  j = l  k=l k=l 

i.e., 

(45) 

(46) 

(47) 

(48) 
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which implies [36] that the transformation from (qi, pi) to (Vk, Uk) is a canonical one 
preserving the Hamiltonian structure. Thus, we have proved 

Proposition 8. The N pairs of coordinates ui,13 i defined by (41) are canonically con- 
jugated, i.e., 

{ui, u j}= {vi, vj}=O, {vj, ui}=6ij, i , j = l , 2  . . . . .  N .  (49) 

Because of Proposition 8, in light of the thought of quantization introduced in 
Ref. [21] we can promptly know that separation of variables has a direct quantum 
counterpart [31,40]. The corresponding quantization procedure is similar to the one in 
Ref. [21], and thus is omitted here. 

6. Discussion and comparison 

We should emphasize that the integrable Hamiltonian systems (11) and (34) stud- 
ied in the present article cannot be included in the integrable systems considered in 
Ref. [21 ] where a large number of completely integrable systems were discussed. The 
simple reason is that the Lax matrix M contains the term of 2 -1. The case of the Lax 
matrix M including some positive power of / l  has been studied by Eilbeck et al. [21], 
and the associated separation of variables may be realized. But the general case about 
some negative power of 2 in the Lax matrix M is not yet discussed. The present article 
only deals with the Lax matrix M containing the term of 2 -1, and gives an associated 
modified r-matrix and separation variables. Then, we naturally desire to see that a 
generalized Lax matrix M, including both negative and positive powers of 2, the asso- 
ciated dynamical or non-dynamical r-matrix and separation variables are investigated 
in a short time. 

It should be mentioned that the modified r-matrix (25) obtained in the present pa- 
per depends only on the parameters 2,/~, and has no relation to the canonical (or 
dynamical) variables pi, qi, i.e., (25) is a non-dynamical modified r-matrix, which as- 
sures that the Poisson algebra of a model whose structural constants are given by the 
non-dynamical r-matrix is closed, and there is the closed-form Yang-Baxter equation 
connected with their r-matrix. But the dynamical r-matrix, generally speaking, has no 
longer those attributes [22]. Nijhoff and Capel systematically studied the different as- 
pects, such as Miura transformations, integrable mapping, similarity reductions, etc. 
[41-43], of integrable discretization in space and time of the KdV, MKdV, and other 
nonlinear evolution equations. Afterwards, Nijhoff and his collaborators present the dy- 
namical r-matrix for the elliptic Ruijsenaars-Schneider system [22]. Eilbeck et al. [21] 
constructed the dynamical r-matrix of a class of integrable systems in the continuous 
case. Apparently, the r-matrix (25) cannot be included in the above literature by virtue 
of its non-dynamical property. Recently, Ragnisco [44] finds a dynamical r-matrix for 
the Gamier-constrained system of the discrete Toda lattice. But a very interesting thing 
is that the author looks for a non-dynamical r-matrix for the same system of discrete 
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Toda lattice through choosing a different Lax matrix, which is being organized for a 
paper for publication [45]. Just as pointed out in the end of Ref. [44], for the same 
integrable constrained system, it is important to search for a non-dynamical (or con- 
stant) r-matrix as earlier as possible, because that will largely reduce the complicated 
process of calculations such as Yang-Baxter equation etc. 
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