
ELSEVIER 

16 October 1995 

PHYSICS LETTERS A 

Physics Letters A 206 (1995) 347-358 

Algebraic structure of the operator related to stationary systems 

Zhijun Qiao a,b 
’ Institute of Mathematics, Fudun University, Shanghai 200433, Chintz ’ 

’ Depcwtment of Mathemntics. Licfoning Unicersitv. Slzenyflnfi 110036. Chinu ’ 

Received 6 March 199.5; revised manuscript received 19 July 1995; accepted for publication 4 August 199.5 
Communicated by A.R. Bishop 

Abstract 

The algebraic structure of the operator connected with the stationary systems of non-linear evolution equations (NLEEs) 
is presented in this paper. The relations between this kind of algebraic structure and stationary systems are further discussed. 

Stationary equations of some soliton hierarchies (such as the KdV hierarchy, etc.) are higher-order nonlinear 
ODES which often possess Lagrangian and Hamiltonian structure [1,2]. Such systems are known to be 
finite-dimensional systems and very often completely integrable [2]. In Ref. [3], Dickey extensively studied the 
stationary systems of the KdV hierarchy and the matrix hierarchy and gave their corresponding Hamiltonian 
structure, first integration, action-angle variables and Baker functions. 

In 1987, Antonowicz, Fordy and Rauch-Wojciechowski [4] presented a Miura map between the finite-dimen- 
sional phase spaces of stationary flows of nonlinear evolution equations and used this to construct a finite 
bi-Hamiltonian structure for such systems. Afterwards, the so-called “nonlinearization of Lax equations” was 
proposed by Cao [5,6], and the constrained flows [7] of integrable PDEs or the ristricted flows of the soliton 
hierarchy were put forward by Antonowicz and Rauch-Wojciechowski. Based on their works, Rauch- 
Wojciechowski introduced the Newton representation for stationary flows of the KdV hierarchy in 1992. All 
these results are very interesting. There are very few understood algebraic or geometric structure properties 
connected with the stationary systems. In this paper, we try to construct the algebraic structure of an operator 
related to the stationary flows. 

Recently, we have constructed a so-called operator pattern for generating hierarchies of generalized nonlinear 
evolution equations (GNLEEs), and have given the generalized Lax representation (GLR) [ 101. Now, by making 
use of this kind of GLR, we further consider the algebraic structure of the operator related to the stationary 
systems of NLEEs. 
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First, Ict us recall the procedure of GLR in Ref. [IO]. Consider an ordinary N x N spectral problem 

Ly=L(u)v=h4., (1) 

where L = L(u) is a spectral operator, u = (u,, . , u, IT is a potential vector function, A is a spectral parameter, 
,Y=(y,,... , .Y~)~. According to the spectral gradient method (SGM) [l 11, we can always find a pair of 
operators K = K(u), J = J(u) (called the pair of Lenard’s operators) or an integro-differential operator _Y 
(called the recursion operator) such that 

K V,, h = A” J V,, A, c = const. (2) 

01 

PV,, A = A” . v,, A, 2?= J-‘K, (2’) 

where V,,A = S/\/au is the spectral gradient of the spectral parameter A of (1) with respect to the potential u. 
Denote the Gateaux derivative operator L, ([> of the spectral operator L(u) in the direction 5 by [ 121 

L*wq _= L(u+&). 
EC. 0 

Throughout this paper, we always assume that L, is an injective homomorphism. For two arbitrary given 
N X N matrix operators M = (mij>NxN, @;j=(t7~~j)~~~, WC construct a pair of operator equations with respect 
to the two undetermined vector functions G, = (Gt’, . . , Ga’)’ and G_ , = (G!‘, , . , G?‘, jT, 

L,( JG,) =M, (4) 

L,( KG-,) =h;i, (5) 

where K, J are the pair of Lenard’s operators. Write the solution set of (4), (5) as J&(M), .&(fi) (generally, 
,QM) # 0, H”,(G) Z 01, respectively. 

Suppose ~tr,(~) # 0, Jt/,(h;j) # 0, choose Go EH~(M), G_, E _NK(h;i), and define the Lenard’s recur- 
sive sequence (Gj>TZ _ _ as 

G, EJ’~( M), Gj+, = J-‘KG =_‘@+‘G,,, j j > 0, (6) 

G-, EMK( A), CT_, = K-‘JG,=_@G_,, j < 0. (7) 

The generalized vector fields (GVF) {X,,]z= _-co defined by 

X,,, = X,,(u) = KG, = KcYmGo, m > 0, 

=JG,,,=J.P”+‘G_,, m<O, (8) 

produce the so-called hierarchy of generalized nonlinear evolution equations (GNLEEs) of (1): 

14 I,,, = X,,, 1 m EZ. (9) 

Evidently, for different M and G, (9) is different, and for different Go and G_ ,, (9) is also different. So, 
using the new pattern (4) and (5), we can generate many new hierarchies of NLEEs associated with (I), and for 
this reason, we call (9) the generalized nonlinear evolution equations. If M = n? = 0, i.e. Go E Ker J. 
G_, E Ker K, then (9) is exactly the isospectral hierarchy of (1) whose Lax representations have been studied 
in Ref. [13], and if M=h;j=I,,. (INXN is an N X N unit operator) and NJ(INx,,,) + 0, xK(INXN) f 0, 
then from Theorem I we can know that (9) is actually the non-isospectral hierarchy of (I >. 
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Theorem I. Let M, A? be two arbitary given N X N matrix operators. For the spectra1 problem (I), suppose 
(i> Jtr,(M) Z 0, JK(ti> Z 0; 
(ii) for arbitary G = (G(“, . . . , Go))‘, the operator equation produced by the pair of Lenard’s operators K, J, 

[V, L] =L*(KG)LhL&G)L”, (‘0) 

possesses the operator solution V = V(G), where (Y, /3 = const, and CY > fl. 
Then the hierarchy of GNLEEs (9) has the following Lax representation form (called the generalized Lax 

representation (GLR) 

L ,,,, = [Will, L] + MP+‘)~, m 2 0, (‘1) 

.L ,,,, = [ w,,, 3 .q + fiL’Y m < 0, (12) 
111 

q,, = c V(G,)L”“-“7-B, m > 0, 
;=o 

= - fJ V(G,j)L(m-.j)~-a, m < 0, 
('3) 

j= fn 

where 77 = const = cy - p > 0. The operators W,,, (m E Z> are called the generalized Lax operators (GLOs) of 
(9). 

Proof. For nz > 0, 
,,I VI 

[w,, L]= c [V(Gj), L]L’“-“‘8= c {L*(KCj)L(m-.i)ll-L,(JGj)L(“‘-j+’)”] 
.j= 0 j=o 

L(“‘-1)7 -L, ( JGj)L(m-j+‘)n} = L, ( X,) - L, (JG,)L(‘“+‘)~. 

Thus, 

[w,,,, L] =L*(X,,) -Mtim+‘)~. 

L, (U ,,,,I = L, ,,,, and L, is injective. Hence 

L ,,,, =[W,,l’L]+ML(m+‘)V e L*(u ,,,, -xJ=o = U ,,,, =x,,. 

For 171 < 0, (12) may be similarly proven. 
By (I 4) and the injection of L * , we immediately obtain 

Corollary 1. The potential vector function u satisfies a stationary system 

i c,X;(u) =o, Vr, sETIT+, 

if and only if 

r 9 1 s -I 

L c CiWi, L = -M c cJ’+‘)s -/G c CiLiT, 
;= -_I I i=o i= -r 

(‘4) 

(‘5) 

(‘6) 

where the constants ci (- r < i < s> are independent of 1. 
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Kemark. Ordering M = 6 = 0, (11) and (12) can be put together as L,,, = [y,,, L], m E Z which is actually 
the standard Lax representation of the isospectral (h, = 0) hierarchy of (1) ( see Ref. [ 131). Ordering M = fi = 
I NXN, as JtrJ(INXN) Z 0, MK(INXN) + 0, (1 I> and (12) become 

f. ,,,, = [ y,,, L] + L”“+ ‘)n, m>O, (‘7) 

f, ,,,, = [ y,, , L] + En77 m <O, (‘8) 

which are exactly the Lax representations of the non-isospectral (A, = h(“‘+‘)q, m > 0; A, = A”ln, 171 < 0; 
q = (Y - fi > 0) hierarchy, 

U,,,, = KG,, = K_Y’G, , Go E4(I,WN)~ n2 > 0, 

= JG,,, = J5?+‘G_,, G-l ~=4u/vxlv)~ m ‘co. (‘9) 

Now, we construct the algebraic structure of the operator associated with (16). First, we give some basic 
symbols and notations. Let x E [wp, t E R, and 9 stands for all complex (or real) functions P = P(x, t, u) 
which are C”-differentiable with respect to X, t and C”-Gateaux differentiable with respect to u(x). 

9N=KP,, P? ,...1 P,,,TTI Pj~S9, 1 <i,<N). TN stands for all linear operators @= @(x, t, u): ~8’~ +AT’~ 
which are C”-differentiable with respect to X, t and C”-Gateaux differentiable with respect to u(x). For a given 
operator L E Y N, by YLN w e d enote all matrix differentiable operators S with the form S = C, EL + P,( u> L”, 
where P,(u) ES?‘, C, EL+ is a finite sum. [ , ] stands for the commutator. 

Definition I. For an arbitary given integer m E Z (m # 0), and spectral operator L E YN, if there exists a 
pair of operators A, M such that 

[A, L] = -ML’“, AEVN, A4EYFN (20) 

then (A, M) is called the pair of stationary operators of L. We denote by SF all these pairs (A, M) satisfying 
(20). 

Definition 2. For m E Z (m + O), let (A, M), (B, N) E ST. We define the product of (A, M) and (B, N) 
as 

[I(% M), (B> N)tl =([A, B]&J, a), 

where 

(2’) 

,,1 - 1 
[I/V, Nr] =[M, B] -[N, A]+ c [ML’“-‘--‘, NL,’ ] , m > 0, (22) 

j=O 

= [M, B] -[N, A] + 2 [NL”-l-j, IW]) m CO. (23) 
j=m 

Apparently, the multiplication operation (21) is a skew-symmetric and bilinear binary operation. In order to 
prove that operation (21) is closed in ST, we present several Lemmas. 

Lemma 1. Let (A, M) E Sr. Then for arbitary k E 72 (k # 0) 
k-l 

[A, ok] = _ c Lk-I-iML,i+m, k> 0, (24) 
;=a 

-I 

= C Lk- I-jMLj+m, k<O. (25) 
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PKIC$. For k > 0, we use the mathematical induction method. As k = 1, (24) obviously holds. 
Suppose (24) is correct for all integers 1~ k, then 

[A, L’+‘]=L[A, Lk]+[A, Lk]L-L[A, Lk-‘IL 

1-I k-2 
= _ C (Lk-jML,j+‘n+Lk-I-jMLj+l+l”) + C Lk-I-jMLt+I+m 

./ = 0 ;=o 

k-l 
= _ C Lk-,iML_i+m _MLln+k = _ i Lk-iMLi+ln, 

j=O j=O 

For k < 0, 

-k-l -k-I 
[A, Lk] = _Lk[ A, L-k]Lk=Lk c L-k-l-tML,j+jnLk = c L-I-IMLI+~+J~~ = z Lk-l-/MLjf”l. 

j=O j=o /=k 

Lemma 2. Let (A, M), (B, N) E ST (m E Z’, m Z Ok then we have 

VI - I 
M[B, .“I -N[ A, L’“] = - c [ML”-‘-‘, NLj]L’“, m > 0, (26) 

j=O 

= _ fJ [ NLm-- l-i, ML.~]L~, m CO. (27) 
j=m 

Proof. For rn > 0, 

,?, - I 17, - I 
M[B, cl] +[A, Lf”] = _ c (ML’“-‘-‘NLi+‘“_NL’“-‘-‘ML’+“‘) = - c [ML”‘-I-;, NL’]L”‘. 

j=O ,, = 0 

For m < 0, (27) is similarly proven. 

Theorem 2. Let (A, M), (B, N) E $,” (m E & m # 0), then [(A, M), (B, N)! E Sr. Thus SF constitutes 
an algebra under the multiplication operation (21). 

Proof. Since the commutator [ , 1 satisfies the Jacobi identity, we have 

[[A B], L] = -[[B, L], A] +[[A, L], B] =[NL’“, A]-[ML”, B] 

=N[L’“, A] -M[L’“, B] + ([B, M] + [N, A])L” 

,,1 - 1 

z-- c [ML’“- I-j, NLj] + [M, B] - [N, A] L’“, 
j=O I 

m > 0, 

= - g [Mm-l-j, MLj] + [M, B] - [A’, A] m CO, 
j=m 
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From Corollary 1, we know that u satisfies 

X,(U) =o, i>o = (IV/, M) ESlj’“‘“~ (i>O), 

X,(u) =o, i<o M (W;, M) EST (i<O). 

Thus, by Theorem 2, for two different (W;‘, M,), (Wj2, M2) E Sy+‘)v, i 2 0 (or Sl”, i < 01, the potential u 
satisfies [X;‘(u), X;(u)] = 0 iff 

([w;‘, w;2]&4,, M28)ESI’+‘)v, i>,O ( or SF, i<O), 

where 

[w+ X2(u)] =~~EJx:(u+CX~)-X;(u+EXi)l. 
In the following, for a fixed matrix operator M = (miijNx,,, E TN we discuss the algebraic structure of the 
operator related to the ordinary stationary system (15). 

Definition 3. Let L E TN be an arbitary given spectral operator. For a fixed matrix operator M = (mjj>,,,x h! 
E TN, if there exists a pair of operators A, P E FLN such that 

[A, L] = -MP, A, P E vl” (28) 

then (A, P) is called the pair of stationary operators of f. and M. We denote by SF all these pairs (A, P) 
satisfying (28). 

Definition 4. For a fixed M E Y*, suppose that M is invertible, i.e. AK2hrl = MM- ’ = INx N ( INx N is an 
N X N unit operator) and let (A, P>, (B, Q> E St. We define the product of (A, P> and (B, Q) as 

p(A, P>, (B, Q>l =([A B],~(P, Q)]), (29) 
where 

[IP, Ql= [P, B] - [Q, A] +M-‘[M, B]P-M-‘[M, A]Q. (30) 

Theorem 3. Let (A, P), (B, Q) E SF, then [I( A, P>, (B, Q>l E Sr. Hence, SF constitutes an algebra under 
the multiplication operation (29). 

Proof. Since (A, P), (B, Q) E Sf, we have 

[A, L] = -MP, [B, L] = -MQ. 

Thus 

[[A B], L] = -[[R L], A] +[[A, L], B] =[MQ, A]-[MP, B] 

=M[Q, A]-M[P, B]+[M, A]Q-[M, B]P= -M[P, Qj 

So, ([A, Bl, E<P, Q>g> E SF. 

Theorem 4. The multiplication operation (29) is a skew-symmetric and bilinear binary operation, and satisfies 
the Jacobi identity, 

[I[I(A,, p,), (A2, P2)8, (4, P3)l +cycle ((A,, P,)? (AZ3 P2)> (4’ P,)) =O. 

Thus, by Theorem 3 SF composes a Lie algebra under the multiplication operation (29). 

(3’) 
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proof. The skew-symmetric and bilinear binary properties are obvious. Let (A,, PI>, (A,, P,>, (A,, f’3) E 
SF, then 

MIIE( P,, ~$8, Pj8 = [Mk-‘,, P,!, 41 - [MP,, [A,, A,]] 

= [[MP,, AZ] - [MP,> A,], A,] - [M&p [A,, A,]] 

= [[MP,, 41, ,431 - [[MP,, 41, 41 - [‘Y, [A,, A,]]. 

so 

M(lE( P,, P,l, p, tl+ cycle ( P, t P2 t P,>) = 0. 

Because M is invertible, [[(P,, P,], P, 1 + cycle (PI, P,, P3) = 0. Hence, 

[I[( A,, PI), (A,, p2)!, (A3, p3)8 fwle ((A,, PI)? CA23 Pz)? (A3’ p,)> 

= ([[ A,, A?], A31 +cycle (A,, A,, A,), [I[I(p,, p28, P,~++e(P,, P2, p3)a>=o. 

Thus, S,” composes a Lie algebra under the multiplication operation (29). 

Theorem 5. Let M = lNxhr (l,,, is an N X N unit operator), and L E YN be a given spectral operator. 
Suppose that for arbitary i E 22, there exists an operator tVj, such that (kV;, L’> E SpxN. Then 

EL’, L’~=( Ii/-ljl)P-‘, Vi, j E iZ. (32) 

Thus, 

[W,, Wj] =( Iil-ljl)Wi+.j-17 Vi, jEZ. (33) 

Proof. For (W;, L’), (Wj, Lj) E SpxN, we have 

[w;, L] = -L’, [q L] = -L’. 

Hence, for i, j > 0, 

IF-1 j-l 
~1, ~/=[c, w,] -[Li, wi] = C L;-I-k./,,,.Lk+j- C ~i-l-k.[,~~.~k+' 

k=O k=O 

=i,Li+i-l _j.Ll+i-l=(i_j)Li+_'-1, 

for i >, 0, j < 0, 

i-l 

p~;,~;~=[~;,w,l_[Lj,~]= CL;-l-k.lNxN.Lk+i_ &-l-X.,N,,v.~k+’ 

k=O k=/ 

=i.Li+j-I +j,Li+j-I _-+i+j)Ll+j-1. 

Similarly, for i < 0, j < 0 and i < 0, j > 0, we obtain 

[Li, Lj)] =( j- i)L'+i-I, [L;, L/l = -(i+j)Lf+j-'. 

So, (32) holds. 
Write _5?= linear span( L’“, m E 27). Theorem 5 shows that (2, [ , I]> constitutes an infinite-dimensional 

Lie algebra and its generators L” (m E (2) satisfy (32). Write YP’= linear span( W,, m E Z), then according to 
(33), W also composes an infinite-dimensional Lie algebra which is called the non-isospectral Lax operator 
algebra of the spectral problem Ly = Ay. 
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By Corollary I and Theorem 5, we promptly have 

Theorem 6. Let M = ,%? = INx ,,,. For a given spectral operator L, suppose that the conditions in Theorem I 
are satisfied. Then 

(i) u satisfies C,T= _-)’ ciXi(u> = 0, Vr, s E Z+, iff C,!:!, c,(wi, Li7) E SpXIV, 
(ii) u satisfies Ci_,E L cici[ Xi, Xi] = 0 (C,.itZ is a finite sum) iff 

c c,c,( Iii-Ijl)(W,+,,_,, P’)ESI*? 
i./Gl 

As an application of the operator algebra described as above, we discuss the WKI hierarchy. Consider the WKI 
spectral problem [ 141 

y,=( ,: F:)y, i2=--1, 

where A is a spectral parameter, u = (q, rjT is the scalar potential vector function, y = (y,, y2)T. 
It is easy to calculate the spectral gradient V,,h, 

(34) 

(35) 

Notice that 

o’lY2)r= AqY: + hrq.f, 

Here p = d-. Thus, only choosing 
, 

1 
- _&a- 1532 

2P P 2P P 

a’ + la&- I xa2 1 
_ -@La- 1 -La2 

\ 2P P 2P P, 

g-1 = a-la = 1 

as a pair of Lenard’s operators of (341, we are sure to have 

KV!,A = A. JV,,h. 

Apparently, K and J are skew-symmetric, and J is a symplectic operator. The recursion operator oE”= J- ’ K 
IS 

‘a + La-1 32 -r,-242 ’ 
p= ’ 2P P 2P P 

z 4@ 52 -a _ La-1 La2 
\ 2P P 2P P , 

(38) 

Proposition 1. The WKI spectral problem (34) is equivalent to 

Ly = hy, L=L(u) = &.( i, :;)a (39) 
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and the Gateaux derivative operator I,, (5) of the spectral operator L in the direction 5 = (t,, &jT is 

(40) 

Proposition 2. The invertible operators of L, J, K, and 9 are 

(4’) 

K-’ z 2i 

i 

;a-lrpra-’ a-3 _ .!-a-lra-lqa-l 

a-3 _ !-a-~qa-~ra-~ +a- lqa- lqa- 1 ’ 

2-l = 2i l a-1 _ $-lra-lqa - +a-‘ra-lra 

+a-lqa- Isa I 
-a-l + +a-lqa-lra ’ 

(44 

(43) 

respectively. 

Proof. (41) is obvious. By virtue of the identity ra(q/p) + qa(r/p) = 2[a(l/p) -pal, we can prove that 
K-‘K=l,,, (I 2x 2 is the 2 X 2 unit operator). 

Proposition 3. Let A = A(x, t, q, r>, B = B(x, t, q, r>, c = c( x, t, q, r-1, D = D(x, t, q, r> be four 
arbitary given Cm-functions. Then iff 

(44) 

the operator equations (4) and (5) have solutions 

@I’ = a-2A 
0 

~$3 = a-2g 
(45) 

Gy’, = 2iK’D + ia-‘ra-I( ra-lc- qa-ID), G’z’, =2ia-“C-ia-‘qa-‘(ra-‘C-qa-ID). (46) 

Proof. By (40) and Proposition 2, we obtain (45) and (46). 
Let Go = (Gr’, G$‘, G_, = (G!!‘,, G(2’,jT be defined by (45) and (46) respectively. Recursively define 

the Lenard’s sequence IGj}~= _m: 

Gi =3’G,, j > 0, (47) 

Gi =_Yi+ ‘G_ , , j < 0. (48) 

Then the vector fields 

X,,( q, r) = KG,,, = KZ”“G,, mao, 

=JG,,,=J_!S?“+‘G_,, m<O (49) 

yield the hierarchy of generalized NLEEs, 

(4, r),,,, =X,(q, r>, mEZ. (50) 

For m 2 0, (50) is the hierarchy of higher-order NLEEs, and for m < 0, (50) is the hierarchy of lower-order 
NLEEs. 
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AS A = B = 0, G, = (ax + h, cx + d)T E Ker J (a, b, c, d are constants) and G, =_YG, = (l/Zi)(a - 

2 j-/p, - b - 2 q/~)~. Thus, X, = JG, = (- i( q/p),,, i(r/p).,,)T, X, = KG, = i((q,/p3)vv, (r,/p3>.,.,>T. As 
m = I, (50) becomes 

which can be further reduced to the well-known Harry-Dym equation 

SJI = - $ .,II’ 
( I 

(52) 

when r = - 1, 1 + q = s. So, as A, B are chosen as zero, the hierarchy of higher-order NLEEs is actually the 
Harry-Dym hierarchy, which corresponds to the higher-order isospectral (A, = 0) NLEEs of (39). 

Let G(‘) = G(‘)(x), G(‘) = Gc2)( x) be two arbitary given smooth functions, G = (G”), G(2))T. For the spectral 
problem (39), we establish the following operator equation, 

[V, L] =L*(KG)L-’ -L,(JG), (53) 

which corresponds to p = - 1, (Y = 0 in (IO). Through a series of careful calculations, we can prove the 
following proposition 

Proposition 4. The operator equation (53) possesses the operator solution 

V=V(G)=(; ;)+A( Ti ;)L, 

where 

(54) 

Until here, for the spectral problem (34) and the two matrix operators (44) the two conditions of Theorem I 
hold. So, the hierarchy of GNLEEs (50) has the GLR 

L,,,, = [v,, L] +MLm+‘, m>O, (56) 

L,,$, = [ y, > L] + ML”, m <O, (57) 

(58) 

(59) 

where A j = A(Gj), B, = B(cj>, Cj = C(Gj) are expressed by (55) 
(47) and (48)). 

with G = G, (Gj is the Lenard’s sequence 
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By Corollary 1, we have 

Corollur~ 2. The potentials q, r satisfy the stationary WKI system 

C ciXj(q, r) =O, Vl, s E iz+, (60) 
1= -/ 

it’ and only if 

(61) 
Ll=-l J i=o I= -I 

where the constants ci (- 1 G i < s) are independent of X, Xi(q, r> are the vector fields (491, L, W,, M and ti 
are determined by (39), (58) for (or (59)) and (44), respectively. 

Let L be the WKI spectral operator (39), then according to Theorems 2 and 4, for an arbitrary given integer 
m E Z (m # 0) ,S; is an algebra under the multiplication operation (211, and for the fixed matrix operator M (or 
G> determined by (44) SF composes a Lie algebra under the multiplication operation (29). According to 
Proposition 3, M # IzX2, M + lzX2 are obvious, thus, for the WKI spectral problem (441, Theorems 5 and 6 do 
not hold here. But for the KdV hierarchy, Theorems 5 and 6 hold, which will be discussed elsewhere. 

Remark. Classical r-matrices discussed by Semenov [15] have been used for the construction of the 
integrable nonlinear equations [16]. At the beginning of this paper, we simply described the so-called operator 
pattern for producing hierarchies of GNLEEs and GLR as in Ref. [ 101. Then, is there a relationship between the 
classical r-matrix formulation and Theorem 4 of this paper? It looks like no relationship exists. Because if the 
left-hand side of (30) is defined as a classical r-matrix, then P, Q satisfy [P, Qj = [ P, Q], = 
[r(P), Q] + [P, r(Q)]. Substituting (30) into the above equality, we have 

[r(P), Q] +[P, r(Q)] =M-‘AM&-QA+PB-M-‘BMP, (62) 

which implies 

r( P)Q - Qr( P) = M-‘AMQ - QA, Pr(Q) -r(Q)P=PB-M-‘BMP. (63) 
Obviously, there is no r-matrix or linear map r satisfying equality (63) except for the case M = livX N ( INX N is 
an N X N unit operator). So, for a general fixed invertible operator M f INXN E 7 N, it has not been seen that 
the Jacobi identity (31) is related to the classical r-matrix. 
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