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On the Involutive Solutions of Solition Hiera'rchy

Qiac Zhijun (FFEE)
(Dept. of Math. , Liaoning Universily , Shengrng 110036)

Abstract The involutive solutions of soliton hierarchy are given in this paper. Through thae
nonlinearization of the lax system [for solition hierarchy, it is provan that the Involutive sclution of
compatible systems (/) (spatial part}and (F.) (time part} is mapped into the soliton of solutin
hierarchyby the mapping f which is determined by the constraint relation ¥= f{@)} between potentials and
eigenfunotions.
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§ 1. .Introduction

The nonlinear evolution eguations (NLEEs ) , which possess the solutions soluitins as one of their
properties, are generally applied into’ field theory, fluikil mechanics, nonlinear potics.and other
branches connected with r:he mordon physics. The studies in recent years are very vital. The theory
of finite-dimensional integrable system-linou;.fille-Arnol’d theory [1] is paid great attention to.
Finding finite- dimengional involutive systems as many &5 possible and deeply discussung their
properties related to the soliton epuations, are helpful not only to deal with the problem of judgment
for integrable systems, but also to provide some applicant NLEEs.

The isospectral evolution equation of eigenvalue preblem L (u)@= A has the Lax form I,=
[V,L] or Lg=2p,2=Fp .In ref. [2], a correct skeleton of commutator (or Lax)representation
for the soliten equation (vectorfields form u,— X (u) is presented . Based on this , a socalled ”lax
gystemnonlinearization approach” is proposed by Cac Cewed [2], and many finir.edi.mqnsiona.l
involutive systems has been succesfully obtained [47]. In this paper, for the spectral problem like
the form L {u)@ = A, we shall show that the finite-dimensional involutive system through the
nonlineatization of lax gystemn is actuallr generated by the nonlinearization of its time part.
Moreover, It s proven that the involutive solution of compatible systems (A ) (spatial part)and
{F,) ( time part) is mapped into the solution of soliton hierarchy by the mapping f which is
determined by the constraint relation #=f(@) betweem potentials and eigenfunctions.
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§ 2. Hamiltonian System and Involutive Solution

Consider the eigenvalue problem
Lludy = Ay (2.1)

-where 7 () is a matrix differential operator, A is a eigenparameter, For (2. 13, we take the
following procedure ; )

1. Find the Lenard’s operator pair K, of (2. 1) and define the Lenard’s recursive sequence

G KGy = JG;, (G-, EKerd, = 0,1,2,%+).

Generally,G,is a polynomial of u{z) and its derivatives. X,=JG, (j=0,1,2,-+) are called the
soliton vector fields of (2. 1). Look for a solution A,(3;,9,) of the lineat equation KA;=cA, » JA,,
where @;is the eigenfunction correspending to A,,c is a constant. In the light of the skeleton in ref.
[2], we can obtain the Lax form of soliton equtation u.—X.(x)

. Ludg = Ay 2. 2)
3= WY ' (2. 3)
In general, the matrix differential operator W, has the following form )
= D Vioiel)* : (2. 4)
=1

where I;_, i8 a8 matrix functicn depending w{z) and the Lenard’ recursive sequence &;_,.
2. Let 4,(j=1,2,++,N) be ¥ different éigenvalues of (2. 1), then
Liu)p = Ap . (2.5)
where A=diag (A, =, ) yp= (@1, ,ox)T ;9,18 the elgenfuncuon correspinding to ;. .
Consider the constraint relation[* ] .
u = f(@) (2. 6)
Under (2.6), (2.5) is nenlinearized to be
I{fleYg = Ap 2.7
which can be expressed as an intergrable Hamiltonian system (R**,d: Ade:. ) whose invalutive
system{) {F_} is produced by the nonlinearization of the time part (2. 3) of Lax form. and ¥ is
usually ene-of F..
In the symplectic space (R*,de, Ade,), the Poisson bracket of functions #,@ is defined by
involutive

k)
oF 0@
(F, @) =
’ Z :a‘Pn I Py 7 Py
F a6 dF a@
= fe—,—) — {—, =}, .
{aq:; P {aw'.a%} (2. 8)
F G are called invelutive if (#,G)=10.
oF, oF,

Proposition 2. 1 (F.,F.)=0,¥ m,» if and only if {

dF. dF dF. 2F
Proof (F,Fl)={(—F,—"T)»—(—,—)=0.
(FasFO= 7o aﬁ) (ag’l a(pg)

Consider the canonical equation of F.-flow

e ) is symmetrical about MR
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afe — 3 F./3
(Fa) s a—( ] == ( (2. 9)
b P2 — anxa @1
Denote the solution operator of its initial-value problem by gi=, then we get
d Fa. 0F,

Proposition 2. 2 If ¢

. » is symmetrical about m, 2 then 1) any two cancmical systems
dp. dgu

(F.), (F,) are compatible; 2} the Hamiltonian phase-flows gi, gf commute.
3. Denote by z==tfs,fa the flow variables of (H},(F.) respectively. Define

(2,6 (0,0) '
(“‘" ’ ]=g=,,g=_,{"’l ] (2. 10)
P22yt (0,0} -
which is called the involutive solution(! of consistent equations (M) and (#,).
Proposition 2. 3  Let (g (x,8,),9:(2,4.))7 be an involutive solution of consistent systems .

(H) and (Fu). Eet u(z,t.)=Ff(p) (= {(@1,9:)7}, then
1) the two flow-equations {(H), (Fa) can be reduced to the spatial part (2. 11) and the time
part (2. 12) respectively of Lax system for soliton equation {2. 13) with = as their potential.
L{u)p = Ap . (spatial part) (2. 11>
o, = (Wa+ Wi + =+ + caWoi@g (time part) (2.12>
where c,are independent of £;W: (k=0,1,2,+~,m) are defined by (2. 4).
2) u(z,t.) = f () satisfies'the soliton eguation
T U, = Xat aXal 4 o+ cXo (2. 13)
Remark, 2. 4 In the above sense , under the constraint =3 (), the spatial part and time
part of the Lax system for the soliton equation are nonlinearized to be the canonical equation (M},
(¥.) respectively . They are compatible , and completely integrable in the Liouville’s sense.
Solving two times ordinary differential equations group (2, 11), (2. 12), and one time algebaric
operation (2.6}, we can obtain the solution of the soliton equation (2. 13).

§ 3. Examples

1. Tu Guizhang eigenvalue priblem(®
Ly=(— F 4+ u+ A )y

[23 0 ]
K = ¥
0 22+ v
0 23
J = 1.,
129 ?7 — {nd 4+ udr

B KGJ-—], = JGJ.G—z = (1’0)1"
G = (GGuy)Tyj = 0. 1,2,
The Tu hierarchy of NLEEs (u.u)f-= X (u,y0)=JG, possess the Lax representation

L]
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Ly =2y

(3. 2)
Y

= D= 0P+ GRD Iy
=0

where G, is the second component of G, ;.

¥ o
A, = (¢ (z) ,A; "¢ (2) ) satisfies the equation KA, =4, * JA,. The constraint G_; = Zﬂfyields

i=0

(A7 'p, 2 =
u = 2(9’!@)»
-1
S {23 2ie L i L1 LA SRR (3-3)

(A 2p.p}
Under (3. 3), the Lax pair (3. 2) are nonlinearized as intrgrable Hamiltinian systems®:
(R, d¢p A dp|rg*-, H* = H — aF},
(RY,dp A dplre*~*,Fi = Fu — wF)
on the tangent boundle of ellispsoid sphere

TQ = {($h:9) € B¥|[F = 2(A 799> — 1) = 0.6 = (47,9 = 0},

where
H = Fy4
__l L " _i 2
Fo = % A" + (A"*'qmp) - *-;-{q:.q:HA"w.w}‘
+ 1 Z {Ap. Y {(AP.p)
2.4—,:--—1 '{AJ¢;9}} {Ajﬁsﬁ}
{H.&)
T ) [ re* 14
(Far &) -
= .o "
adFr2 S‘F.

It isn’t difficult to know { } is symmetrical about m,%. So,we have (Fa ¥ )=0

which implies that, (H. ) and (F, ) are campatlble . Hence, in proposition 2. 3, let (@) be defined
by (3. 3}, we obtain
Conclusion Let ($(z,f.),@(z.&) )" be an involutive solution of compatible system (A"} and
(Fa), then
ulz,ta) = 2{@g.@},

__{pap) + (AT
{4 ?'P-l‘;‘))

viz, ) =

satisfy a T.equation .
(u.r*): = X, + 1Ky + = + caXe (3. 4)

where ¢; are independent of z.

N —
In fact, acting with the operator (J *A)*upon ¢—, = ZA, . we find that there exist some

=1
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constants ¢y, ++ 0y such_that

P

AEZJ
( {Al-i-lq,'q,}]
L
{A'p,p)
= G + c3Gi_2 + - + Qo + au1G-1 + €3G
= 24 AP
= 4{p, A" '} + 2{th.  A"p) — 2ulp, A~p)
+ o.{@, A" @) 4+ 2p{th, A7) — 2{¢, A@)}

— 2240 4 [%a’ — (w4 3u) AP

‘Thus, (w)f;=JA.. =XotcrXao 1+ +raXo
2. Jaulent-Miodek cigenvalue problemn!™

Ly={(— 2 + v+ AWy
= Ay

— i Laataw o
. 0 2
—latan 3

J = 2
2 0

KG_'_]_ = JG,;G;; = (1 ,O)T;G‘l = (1 ;%D)rn

1 1 .-
Gy = (EU!?" ‘i_' _3_1,2)1'!} = o 1,2,

The JM hierarchy of equations (z,2){ = X.(u,v)=JG. have the Lax pair

Ly = Xy

¥ = D3(— O + FEDDL
=0

where GjY; Is the first component of &;—,.
Consider the constraint

{u = (@, Ap) — -:';l(w,w)*

v= {@,@}

(3.5

(3.6)

3.7

(3. 8)

Under 3. 8), the Lax pair (3. 7) are nonlinearized as completely integrable Hamiltonian systems
(RZN 9d¢ Jﬂl d?!H) and (szsdﬁﬁl d(P)F-) » where

H=2Fo

— %{aﬁ;#} + %(d*tp,tp)
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— LlAp.pripip) + ) ($= 90 (3.9
1 " 1 m+2

1 n 1 w41
— g(mpnp}(;l P,pr — ghpgtp)(zl P,p)

1
+ -i—siwgm)“(xl"w.qa}

CA'pup) AN
+ i w® P (3. 10)
8 S| (Aftp) (A% 9)
. . . dF. dF, . )
This result is given by Mou Weihua., Easy to see that <Ip”a_¢} is symmetrical about m,r. S0 we

have (F.,F,)=0 which implies that (F)and (F.) are compatible . Hence, let f{p) be defined by
(3. 8) in proposition 2. 3, we know that

u(zyta) = {Ap,p) — —'}(w,w}’,

T o(r,l) = {p,p)

are an involutive solution of the JM equation (u, v);: = Xa+ 1 Xaoi+ '+ caXy, where ¢, are
constant.

3. Under the constraint®®-

{q =— (?’lﬂpl)
T = {@rrpr)
the Lax pair of the AKNS hjearachy are nonlinearized as completely integrable systems (R*Y,dep, A
dp:+ H) and (B .dp, Ade:,Fa), where

(3.11)

H = i{Ap,yp:} + %(m:,w)(qmq&) (3.12)
F, == i‘:?’lsﬂ-??}
+%i {1, A" 7@ APy A" @)

= ATy (e A ')
3F. 2F, aF., 3Fa.

\n m = 1!21“'- - (3-13)

(a%,a ¢I}=€a%.m} implies (F.,”,)=0. Thus the AKNS hiertarchy of NLEEs
[:] =J(J—lK)-(;]!m= 0,1,2,%, (3. 14>
.{0 — 1]
J = 21 "
1 0

K [ 299 'g 2— 2q3_1r}
a— 2rd 'y 2rd 'r

have the invclutive solution

g(z.b) = — {pLp1).

r{z,t.} = {(@r, @) {3.15)
where (pi{z,0.) ,p:(x,£.))7 is the inbolutive solution of compatible systems (H}, (F.).
4. The TD hierarchy™ of NLEEs
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(f) = J(J”:‘L’)'*'[g] vm=0,1,2,0, (3.16)
0 13
I {ag "o )
adg ! 0
- i{ 3 g ]
2l27g77 — 43439 '3g '3
possess the Lax pair
— 24+ %r q
Lig.r)y= 1 ¥
- a+ 57 ~
= Ay (3.17)
2 Fe IO — 6 — e 0 — (@ + 60
o= 2 )
=0 ) —2‘(‘}5'—]1 + ¢7'¢E)) — G,
P fantf ' (3.18)
which under the constraint relationl*!
g = 2 {?l!% +
(@) — {pavipa) ’
= (3.19)
 {p1aips)
are nonlinearized as integrable Hamiltonian systems{H ), (¥F.) with .
. H J— FD‘ r
= — {(A@.g:} + Yipno2Ue,m) — {pp))
Fo= — LA @ e o Ve (A @) — (Aprepe))

(A'@sm}  (A@apa) 1.2 (3. 20)
- 2T = 1y Ly, .
trjem—t | AP {AB, e}

In (3. 18) G,—,= (G}¥, 3{2,)" is the Lenard’s recursive sequence; KG;,=JG;=J@,, G.,=(q,
0),j=0,1-. (H) and (F.) are completely compatible in virtue of {H,F.,)=0. Let (p(x,t),
@’g(t,t_))rbé aninvolutive solution of systems (H) and (F.,) , then

glz. ) = 2 Sp.pd, '
rlr, b)) = (L) — (@Paaiprd

~ (le%)
satisfy (3. 16).
5. The I-C-Z hierarchy'® of NLEEs
(:] =J(J_1f;)(;] g = 0,1,2,-, (3. 21)
1
0 ?3
J=2i »

R N W

L]
e

0 T e S T ey e i A T e 8
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—%az+2aqa*‘q dr — 23g3 'r
B ==
r+ra+ 2avd g + gr —%a’—zawarlr«—qa——za
have the Lax representation
r—d rtg -
Lig,r)y =~ 1 .
ey (r—q r+a')gr
= Jy (3. 22)
- [ %515’--- + [O10) + 20 "ail, — el 0] - -;'(05‘—’- + i) — q0ilh + 1012,
e 2 . _ ) :
=t — (O = B0, — gBit + rElB 501 + [60) + 257 ' (e6]0 — +8}20) T2
XLty {3.28)

where @, = (& ,3)7 is the Lenard’s recursive sequence; KG,=JG 1, Gh=0{r,q)7,j=1,1,
i+, Under the constraint '

g = ':?’n?;l} - (%-%};

- re= (g}t (PsPiaipnp =0 (3. 24}
3. 22) and (3, 27) are nonlinearized to be homiltonian systems (H==—:iF,},(F.) with
= — tFy
= (AP, P2} — {1+ P + i@ pa)
- — AP i{P,) + {P.pt
Fa=— (A" 'prypay — i{A (@1 + @) (@1 + @)} {@ragped-
—S| feede o tenden L L2, - (3. 25)

ot (@A™ T e, AN )
which are completely integrable in the Lioubille’s sense.

Let (@ {x.6a) . p2{x,4.))" be a solution of the consistent systems (H),(F.) . then
gz la) = (@Lap2} — (Prap2?s -
rl{zydnd = {1} + (P, )

is an involutive solution of the equation (3. 21).

6. The Levi hierarchy!'®of NLEEs

(E =J(J"K)'[;) sm = 0,1,2,s, - (3. 26)
(2 o ”
J = ,
a 0
& —dg—g0 —F —vra3+3g
T |l#—ar+ ¢ va+ ar
is the consistent condition of
“origh |
Lig,rdy= -

=2y (3. 27}
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- %m;%n +E). + (B2 — G)a — g,
n,= 2,
o G2y ' cG;E + 682, + (62 — 622
W (2L)= Yy (3. 28)

where ¢,_, = (G$2,,6)7 is the Lenard’ recursive sequence; AG,=JG,+,,Ga=(r,g)7,y=0.1,
v-+. Under the constraint

g=— (@1 T @il
" r={g + P (2.29)
{3.27), {3.28) are nonlinearized as Hamiltonian systems(H), {(F,} with ‘
H _— Fo
= {APL ) + é—{tpq + @@ + I PLagn) ’

2
+ ‘%({QJ uﬁol}{%;%}'_ {an’z}!)

Fo= %ﬂﬁ'“%.?z) + -1~{A"(qm + @) opr + ) Py

Z {Agropr? {A'PLagn?
2 perd RO AR SRR Ol Y
Both of {(H), (F.) are completetly integrable , and their phase — flows commute. Thus.ihe Levi
equation {3. 26) has the involutive solution

ym = 0G,1,2,c". ) (3.3

glz,da) =— (@1 + @1l
ri{z,ta) = {5y + Gra@l
where (@:(Zyéa) »@:(x,8a))Tis a solution of the compatible systems (H),(Fa).
Cac®™) has considered the case of Kdv hierarchy. GulY'¥l gave the involutive solutions of
MEKDV and Boussinisg-Burger % hierarchy. Of course, we, may look for the involutive solutions of
other soliton hierarchies. ) ©
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