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Two new integrable systems in Liouville’s sense
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Under a constraint on potentials and eigenfunctions, two spectral problems (Kaup-Newell spectral problem and Levi spectral
problem) are nonlinearized to be new finite-dimensional completely integrable Hamiltonian systems in Liouville's sense.

It is quite an important task to look for new completely integrable Hamiltonian systems in soliton theory.
The key lies in looking for involutive functional systems, which are obtained in general by the spectral tech-
nique associated with nonlinear evolution equations, and thus new completely integrable systems are produced
{1,2]. Flaschka [3] pointed out an important principle to obtain finite-dimensional integrable systems by con-
straining infinite-dimensional integrable systems on a finite-dimensional invariant subset. Recently, Cao Cewen
has presented the thought [4] of generating finite-dimensional integrable systems through nonlinearization of
a Lax system for isospectral evolution equations and has successfully found many finite-dimensional com-
pletely integrable systems [5]. The basis for the nonlinearization of a Lax system is that the soliton equation
Ui=X,, is first expressed as a Lax form, L,=[V,,, L}; then under the Bargmann constraint or the Neumann
constraint the time part of the Lax pair is reduced to a finite-dimensional Hamiltonian system, whose Ham-
iltonian F,, constitutes the involutive system of the nonlinearized system of the space part of the Lax pair under
the above constraint. Another important application of the nonlinearization method is that finding the solution
of the soliton equation associated with an eigenvalue problem is reduced to solving the compatible system of
nonlinear ordinary differential equations [6~10].

In this Letter, by the use of the “nonlinearization method” [4,5,11,12], we obtain two new completely in-
tegrable Hamiltonian systems in Liouville’s sense which are generated through nonlinearization of the Kaup-
Newell eigenvalue problem and the Levi eigenvalue problem, respectively. So, the scope of the finite-dimen-
sional integrable systems proposed in ref. [5] is enlarged furthermore.

We describe briefly here the procedure for the nonlinearization of the eigenvalue problem. Consider the ei-
genvalue problem

Ve=M(u, 1)y, y=(y,1)7. (1)
The functional gradient 84;/8u of the eigenvalue 4,, with regard to the potential « satisfies
K34,/ 8u=4,J84,/8u . (2)

Here K and J are called the Lenard operator pair, and their Lenard gradient sequence G, can be determined
recursively:

KG,_\=JG,  JG_,=0, j=0.1.2, ... (3)
The soliton hierarchy u;=JG,, has the Lax pair, the eigenvalue problem (1) and the auxihary problem

Vi = me . (4)
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The following two constraints,
N N
GO: Z '}/",6/2,),»/614, G%lz Z }’16),’//51,{’ (5)
J=1 J=1
which are called the Bargmann and Neumann constraint, respectively, play a central role in the process of non-
linearization of the eigenvalue problem (1). From (5) we can obtain the relations

u=f(g,p)  andg(q.p)=0, u=f(q.p), (6)

where g=(q,. .-.qn) T, p=(p1, .ox) T, (4, 0,) = (11 (4;), ¥2(4,) ). Under the two constraints, the eigenvalue prob-
lem (1) 1s nonlinearized into the two finite-dimensional systems

("X) .—:M(f(q,p),A)(Z), A=diag(A,, .. An) . 7
(q*) =M(f<q,p>,A)(q)ﬂ ¢(q.p) =0, (8)
P p

which are called the Bargmann and Neumann systems, respectively. The time part of the Lax pair (4) is re-
duced to two finite-dimensional Hamiltonian systems satisfying the above constraints, equalities (2) and (3),
whose Hamiltonian, £, constitutes the involutive system of the Bargmann system (7) or that of the Neumann
system (8) through the Moser constraint procedure. Sometimes some modifications are made, especially for
the Neumann system.

Following the thought of ref. [5], we continue to use the concerned sign of ref. [5] in this Letter. Consider
the following spectral problems:

(1) The Kaup-Newell spectral problem [13]

—14% Au
ysz(VE ( /{v IAZ) ¥V, (9)
where i:v/j, A is the eigenparameter and the functions u=u(x, 1), v=v(x, 1) are called potentials of (9).
The underlying interval Q is (~oco, +00) or (0, T) for the decaying conditions at infinity or for periodic con-
ditions separately.

Let 4y, ..., Ay be N different eigenvalues of (9), then the functional gradient Vi, of 4;1is
6/1/611) (A p? ) J L s
Vkﬁ( / = A (vpf+4id;p,q;—ug;) dx=1.
J 6/1]/61/ __Alqj_ 2 J JEIHy 7

where y= (p,(x), ¢,(x))" is the eigenfunction corresponding to the eigenvalue A, e,
qj,xz“i/]~/2QJ+/]‘~j“pjv pj,)(:;tjvqj«}-iilzp]‘ (10)

The Lenard operator pair associated with the Kaup~Newell hierarchy is

10ud —'ud —%82+%6u6”‘va

=1, - I= (g g)‘
562+§8v8“‘u6 19vd ~'vd
where d=4/dx, 7'90=99 ~'= 1. VA, satisfies the linear equation KVi,=2JV],

The Lenard recursive sequence G,, and the Kaup-Newell vector field X»=JG,, can be calculated recursively
with X, =KG,,_=JG,,, m=0, 1,2, .., G_,= (1, 0)7, the first few being
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Go=(v, )7, Gr=((1/20) v +3v%u, — (1/2i)u, +3u?)T,
Xo=(ue,v)T, Xy =(~(1/20)ue+1(u?),, (/2000 + 5 (V%u) )T .

The soliton equation (u, v)f =X, =JG, is reduced to the well-known derivative Schrédinger equation
u;=3iu+ 4 (ujul?), as u=v*. The Kaup-Newell hierarchy (u, v)F = X,, (4, v) is the compatible condition of
eigenvalue problem (9) and

Ve = 'ZO V(G;_)A20m =Dy, m=0,1,2,... (11)
=
VG, )= ( -3 (uG Y, +0G2), ) %iG}E{,er§ua~*(uc;}1>,,x+u6}3{,x))
TG+ 409 (UG D)L +0GI2) ) YA~ (uG (Y, G2, ’
J=0,1,2, ... (12)
G = (G, Gf2) T is the Lenard recursive sequence; G, . =3G ", /dx,i=1,2. The Bargmann constraint

is given by Go=23/_, VA, which is equivalent to
u=—<(A4q,95, v={Ap,p)>, (13)

where g=(q,, .., qx)7, p=(py, .0 T A=diag(4,, .., Ay); ( , > is the standard inner product in R".
Under the Bargmann constraint (13), the Kaup-Newell spectral problem (9) is nonlinearized as

Qx=—idq—(Aq,q>Ap=~3H/dp,  p,id*p+ (Ap, p>Aq=3dH/dq (14)
which is an integrable Hamiltonian system (R2, dp adq, H) with
H=1{A%p, ¢>+4{Ap, py<{Aq, q> , (15)

whose involutive system of conserved integrals is

@ (42D vlg, gy (A3, gy
=1 <A2jp’ q> <A2j+1p’p>

Remark. H=F,. (F, F))=0, Vk, leZ* is easily proved by using properties of the Poisson bracket.
(2) The Levi spectral problem [14]

Fon =A™ 20, g5 + 5 (AP, p) (AP g, gy +}
7

0 u It is no
Yo=Up= (U A_Hv)w. \ (16) and usi
Remy
By making the transformation w=yexp{;[Ax+0d~"(v—u)]} and its inverse y=yexp{3[-Ax+3d " (u—-v)]), (R ¢
(16) is equivalent to the eigenvalue problem
— 3+ (u—0) u (E, F):
Vo= My= v ti—u))”
2 ~ which
VA, = (82;/8u, 84,/ 0) = (p,(p,+q)), — (;+4,)q)T,  j=1,..N. (17) F(E, H
We choose The 3
Ke ( —du—ud —62-v6+6u) e (o a) ~ senting,
T \32—dv+ud vd+ du ’ T\ 0/
Then V4, satisfies KVA,=4JVA,. Referenc
The Lenard recursive sequence G; of (17) is determined by the formula KG,_\=JG, j=0, 1, .., G_,=
(0, 1)7, the first few being § )0 Mc
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Go= (v, )7, G =(ve+2uv—12, — i, —2uv+u) T
Gr= (Ve +3uv 3w, + 13+ 3vu—6v%u, u,, —3uu +3u v+ 13+ 3u? — 6u2)T

The representative equations of the Levi hierarchy have (u, )T =JG, and (u, v)F =JG,, which is reduced to
the well-known Burgers equation, u;= —u,, +2uu,, as v=0 and to the well-known mKdv equation, u,=y
6u’l,, as u=yp, respectively. The Levi hierarchy of equations (u, v)¥
genvalue problem (17) and the auxiliary problem

xxx T

=JG,, has the Lax representation, the ei-

Vim = ‘Zo V(G,_)Amy,
i=

(18)
where
VG;,_y)
_(—-%(G,-‘_”.ﬂ‘G,‘f’uH%(u~v)(6‘}3’.«G}l). ~3A(G ~GHY) —G R Hu(GR2 -G )
- G+ u(Gf -G 1) %(G}i’;,,+6}f’,,x)+%(v—u)(G,‘E’,«G}_".)+%1(G,‘3’;—G,‘_"l) '

(19)
Giov= (G, G2)7 is the Lenard recursive sequence of (17), j=0, 1, ...: G2 =dG D, /ax, i=1, 2.
Consider the Bargmann constraint Go=2N, VA;, which is equivalent to

U=—<{p+q,q>, v={(p+qpd. {20)
Under the Bargmann constraint (20), the nonlinearized equation (17),
Ge=—349—3<p+q,p+q>q—(p+q. q>p, p.= 1 Ap+3<p+q, p+ayp+ (p+q, pig,

has the Hamiltonian H=F, and the conserved integrals involutive systems in pairs F,,,

{q,q) <p,q>}
Fo=H=1¢4 N +1 : N + 4 »
5 1Ap. q> +3{p+q, p+q><{p, g> 2 I¢p, > (p, p>
| (Ma.q>  (Ap gy
F o1 m+ 1 1 m 3 / / ) !
m=3<AT gy + 1A (p+Q)»P+q><p’q>+2J,;0!<A'"‘fp,q) <A™ p, p> e

It is not difficult to obtain the Poisson bracket (£, F))=0, Vk, leZ *, through a series of careful calculations
and using the properties of the Poisson bracket.

Remark. In this Letter the Poisson bracket of two functions E(p,q) and F(p, q) in the symplectic manifoild
(R*, dp A dq) is defined as

N 9E F OE 9F
(E,F)=y 2297

— o= o= =(E, F,>~(E, F,>
/<189, dp;, dp, dg, Fo )= CEp Fy)

which is skew-symmetric, bilinear, satisfies the Jacobi identity and the Leibniz rule: (EF, HY=E(F, H)+
F(E, H). A system of functions {f} is called involutive if (/o /) =0.

The author wishes to thank Professor Cao Cewen for his valuable instruction and Dr. A.R. Bishop for pre-
senting refs. [1,], [2] and his helpful view.
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