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Abstract Following Cao’s idea, we present commutator fepresentations for twe hisrarchics of nonlin-
ear isospetral evolutién equations associated with two iscspectral problems studied by Hu Xingbiao.
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It is an impartant topic w search for the comrmutator representations for nonlinear isocspectral
evolution equations in soliton theory. In recent years, a lot of results on commutator representa-
tions have been successively obtained (see [1—77]). In this paper, following Cao Cewen’s idea
about commutator representation theory (see [1]), we study two isospectral problems presented

] by Hu Xinghiaol®l and give commutator representations for the corresporkding hierarchies of non-
linear isospectral evolution eguations.

The two spectral problems (sec [8])
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can be rewritten in a unified form
7 1+ ga™!
=llp=
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where p= (3, )"+ 1A is an eigenparameter, and the vector-valued function «(z) = (g(z),
7(z))7 iz called the potential of (1). The underlying interval £2is (—oo, o) or (0, T) un-
der the decaying condition at infinity or petiodic condition respectively. Let w—wu--edu.

)ﬁg e=+1, (1)
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Proposition 1 Let . be an eigenvalue of (1), and (¢ . #»)" be the corresponding eigen-

function . -
#he = g + (1 4+ 27" g,
{ toe = (O + eqlh — 7.
Then the functional gradient \/,A of the eigenvalue 2 with regard to the potential « is
— — Ly -
Vi (Zj;‘;{} - ( *’“’;;; "”3} ([, +oampra) 3
Proof In Section I of [9], we choose miu=r, mp=1-4¢."", mn=2A+e. Then we
have

(2)

L[( — eyt + A7)6g + 2pigudr Jdz = SA| (P + g2 "y)dr
which implies (3).
Proposition 2 Let A be an eigenvalue of (1). Then for ¢e=1 and e= -1, V/.A satisfies the

linear relations

K20 = AN A (4
and

KA = aIV/.A (5)
respectively , where K, J and X, J are two pairs of skew-symmetric operators having the forms
(@=3d/ce, B '=3 'g=1)
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which are called the pair of Lenard’s operators of (1) corresponding to e=1 and e==—1, respec-
tively.
Proot For ¢=1,
— Fgd — d'r2

JIK = -
%a%a—ra—'ga %3‘ —~rd'rd—g



http://www.cqvip.com

£ OO0 http://www.cqvip.com|

WO, 2 COMMUTATOR REPRESENTATIONS OF TSOSPECTHAL HIERARCHIES 217

Thus,. in order to obtain (4) it suffices to prove
JOE S = AV
From (2) we get
(— o + ') =— 2r(f + 279D
(2igds = 201 + @2 + 20 + 9)¥h ‘

— '3 — # + A7'gE) — I 2P)
=—3'2r(B+ ) =2 - (— i +27'¢5),
(4020 —ra7109) (= 1 + 274> + (5 — 70 — o) 2t
= A~ (2pf) -
which yield (8).
For g=-—1,
lyg 1._ g
2 ra 23

r

%a-f—a— ra-1gd %a? S s %a-f—
Similarly . we can prove
JTET5 = A ()
(8), (9) imply (4). (5), respectively.
Proposition 3 The spectral problem (1) is equivalent to
— &g r+3

. 10
egr —g—g) —g—7+n+F a0

Ly =i$, L =L, s)=(

Proof Obvious.
Definition 1 Let /., »—>L{(u, £) be the mapping from a potential function into a differen-
tial operator. The Gatezux derivative of the mapping L in the direction £ is defined by

d E
L..(& = an '_DL(u + 5. (11)
Lemma 1 For the spectral problem (10), the Gateaux derivative of L is
— 5 & 0 Q
L., = dy

“ (-‘-‘(“ S+ 78+ g8 S — & — 21"‘52) + (“ £6) 0)

u=(q)9 é;’(é‘:)! e=+4+1, a2
T G2

and L., (simply written as L. below)} is an injective homomorplism.
Proof Directly calculate.
Consider the commutator [V, L] of the two operators
V="V +Via, L= L(u, £) = L + L3+ L&,
where
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L,=( — " ) L==( 0 1). L==(° 0); (13)
elgr — ) —gq—ri4r, —eg 0O 01 -
V|=(u F); Vz=(A 0), (14>
E H 0 D
with A, I}, E, F, H to be determined functions. '

Through a series of calculations, we have
V. L]=¥VL—1m
=V L] — L' + Vil — Li¥im
+ (Viy L)+ (2 L] — LoVa + Vil — 2L4Vi — Lab3a)d
+ ([F2 L)+ [V, Lo] + Vila — 2LV )
_ e~ 4+ )F—mgA—rE— K, (n -—q-l-ﬂq—r’)ﬁ'—rH+f.A—H,)

B 2 Z
+( —uqF —E —H+q(A—D)—D.)a
—qH+e(— o+ g)D—A) + A — @B — 28, E+ oFf — 2H, — Da
( 0 A=b+ F} #. (15
ad—D)—E  — 2D,
where
L=e(—gt+g)d —(.—gteg—DE+ o(— g+ oo + 7¢)D — B,
Zi=rE—e(—q+gIF+gF.+ (ra — ¢. — 21700 — Ho..
In the following we shall seperately discuss (15) for e=1 and s=—1.
I. e=1. .
We hope
[v, L]=L.(KG) — L.{JG)L, (16)
1. €. .
v, L]
— (KG)'W® (K™
=( — (RGP + r(KDP + g(KD® (KPP — 2r (KGO — (KG)‘”)
_ ( — (JOO® (JG)YD )L
(JG)m + rJG)P + g(UDP (JOP — 20(JODP — (JE)V[
0 0
+ ( (J(;)m 0) +{ ( (KG)“) 0)
—_ (Jg)(n (JG)G}
( OM 4+ r(JGYN 4 g(JGH®  (JGP — 2r{JG)® ~— (J’G)‘“]L2
0 0
+ ((JG)‘” )(Lu + L&)}a+ { ((JG)‘“ o)h
( (J(;)(n (Jg){z) )Ls} ;‘ (1?)
WON +r(JOP 4+ ¢IG)® UGHE — 2P — (JG)W

where &, J and L=Lgu. 1) are defined by (6) and (10) respectively, G(z) =(@"(z),
G (z))7, G (x) and G (z) are two arbitrary smooth functions on 2, and ( « )® (i=1, 2)
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stands for the i-th component of (( » ).
In order to get (16). in (15 we should choose

A= A(G) —_— _%.3— (qG(” + er) _— _..1(1(2) 4 = 8 - (_E_Gm G{:J) .

T

D= D(G} ____é.a—](qG(]) +1.G{2)} — 1 _g_Gtz) + (_Q_G(n +G(z))
E = E(G) ————-9-(qaﬂ> + ) 4L 1(1@;: +Gm)
F= F(G) _-___.(lG-(I) + G(!)) 8 1 (_g_G(I) + Gm) (18>

H=HE) = T(QGS” + rGPY — _é.(_g_Gm G(:n):_
Herce, we have
Theorem 1  Let G (x) and G® (z) be two given smooth functions on 2, and G g (G,
G?)T. Then the operator eguation determined by the pair of Lenard’s operators X, J and the
spectral operator L=L(x, 1},
[V, L] = L.(KG) — L. (JG)L (19

possesses the operator solution

(203

V————I«’(G)z( 0 F(G}) (A(G) 0 )

E(G® H(G@) 0 o(a
where A(G), D(G), E(G), F(G), H(G) are defined by (18).

Proot Substituting the expressions (18) of A(G), D(G), E(G), F(G), H(G) into the
right-hand side of (15} and noticing #=1, through a lenthy calculations we find that the calcu-
lated result is equal to the right-hand side of (17). So, Theorem 1 holds.

Now, for e==]1, we recursively define the Lenard’s gradient sequence G;of (1)} as follows.

G-, == (0, 037, Gy = (2, 2r)7,
JGiy1 = KG,, 3=—1,0,1, - (21>
Xo=JGu (m=0,1,2,+--) are called the vector fields of the spectral problem (1) with e&=1, the
first few results of calculations being
Xo = (gy )7, Go = (2, 2¢)7;
(=] e ).
G = (— 1% ra— 1 — 2qr)".
The hierarchy of evolution eguations associated with (1) for =1 are produced by the vector
field X., i.e.,
w= (g, r){ = X.(g., >, m=0,1,2,- 22
with the representative eguation
(g, 7). = Xi(g. #)
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T
= ((%—%Q‘n_%q‘!‘z—qul- "-qrt+(%ru’—-'%ra_yr}rJ [} (23)
which can be reduced to the well-known Midy equation " ‘
s @4)
as g=0.
I. e=—1.
We hope
(v, L] = L.(KG) — L.(J&L, (25)
where K, J and L=L{u, —1) are defined by (7) and (10) respectively, G(z)=(G" (),
G ()Y, Y (z) and G (x) are two arbitrary smooth functions on £2.
In order to solve V from (25) by using the approach used in case I , in (15) we should
make choice of
PP tn oy 1L 1. g 11.9.n 0
A=Al = 23‘(QG. =+ rGZ#) 41'(1"(’ )'_+3r(r('£ + G,
D = D(6) =— 2o (B + 6@ + T Let + 6,
" g _ 1 9. ~wv oy 1 9.9 2 (2) lg.g
B—E(G)—4 _r(an + rG*) P 1,_(v_GFi' + Gf ),+4 r(er)” (26)
- =1, 2.0 11 ) 1 1,g.a
F= ) = 4(T‘Gy 4 a2 5 r(_?-_G}I + 62y, + i T(T(,tz:)n
H=HA(6) = %(qﬁ'ﬁ” + 22y — %('?_‘G}D + @)y, + %(%Gm} . L
So, we get 7
Theorem 2 Let G*"{z) and G'®(z) be two given smooth functions on 2, and G4 (G, .

G®)T. Then the operator equation determined by the pair of Lenard’s operators £, J and the
spectral operator L=L{u, —1),

[V, L] = L. (K@) — L.(JGL (27)
has the operator solution
. . 0 P& AD 0
V=re = (E(G) H’(G)) ( 0 D(G)) ’ 28

where A, D(G), E@), F(G). A(G) are defined by (26).

Proof Substituting (26) into (15) and hoticing £==—1, by directly calculating (15) and
decomposing (25) into the form like (17}, we see that the operator equation (27) has the opera-
tor solution (289,

For e==—1, the Lenard’s recursive gradient sequence &;of (1) are defined by

G-, = (0, O, & = (0, 27)7,

J8,4 = K@, i=—1,0,1, -
Xa=JGa (m=0, 1, 2, +--) ate called the vector fields of the spectral problem (1) with e=—1,
the first few results being '

(29
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Xu - (q:o T:)T' Gﬂ = (0. 27')7;
Xl = ((i '17‘., - L 1 2) L)
i T r

1 1
22 &7 2

é] e (T; - 29§ %‘ru — TS - t}:)r-
The hietarchy of evolution eguations associated with (1) for e=—1 are given by the vector
fields Xn, i.e. ,
: = (g, )} = X.(q, 7). m=0,1,2,+ (30

with the representative eguation
(g, )= Xig, ™)

1 1 1 1 7
== ((—""_ %Tu__iq= "'%Q’rz)'- ?'E'(Tu - 2!1:) + "i—?'-z - é S_?q:)z) 1 (31)

2 r
which can be aiso reduced to the temarkable Mkdv equation
- mn = "]d-—‘l'n, —_ %Tzf'r
as g=0Q.

Combining I (e=1) with I {(e=—1), we have two theorems below, which describe the
close connection between the commutator repr&sentations' for the hierarchjes of evolution egua-
tions (22), (30) and the operator solutions of the operator eguation (19>, (27).

Theorem 3 Let G,=(G", G{?)"and &= (G1”, G/ )" be the Lenard’s recursive gradient
sequences of (1) for e=1 and e=—1, tespectively. Let V,=V (G;) and ¥,=VF (G,) be scperately
determined by (20) with G=G,and (28) with G=G;. Then

I:-w—m. L’] = L.(Xa), m=0,1,2,- (32)

[W’., L] - L'I (Xu)g m — 011 ,2'"' (33)

where Wa = > ¥, ,Lr™2, Wo = > Pulr™?, L= L(4, 1)in (32), L=L{«, —1}in
e Il

(33).
Proof From Theorem 1 and (21), we have
[Wa, L] = > (V,-1, LI

=1

=S (KGy—1) — L. (JG- DL

jo=1

= i(b. G ™7 — Lu(JG,_ DL )

=il
=L.(JGn) — Lo (JG_DL™ = L.(Xa).
Similarly, from Theorem 2 and (29) we can obtain (33).
Theoréem 4 The two hierarchies of evolution equations (22) and (30) possess the comnmu-
tator representations

L ={Wa, L], L=L(u, 1), im=0.1,2,--- (34)
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and
= [H‘..-' L]p L= L(ﬂq - 1); m = 011 -2."' (35) L

respectively.

Proof

— & T
L= + )a= L. .
(E(_Qu+1'9l+q":) '-"‘u""ﬂt—zrh) (—cqu 0 !

For e=1,

L — [Way L]=L.(&) — Lu(Xa) = L. (e — Xa).
For e=—1.
Lo —[Way L] = L. () — Lu(Xa) = Lu (e — X,)- )
In addition, noting that L. is injective, we cbtain % — Xu.=0, & — X.=0 if and only if L=
[(Wa, L], Le=[Wa, L], respectively. Those are the disired rusults.
Corollary 1 (22) and (30) are the natural compatible conditions of L(u, 1)p=2A¢, h—
Way and L{z, —1)9p=Ai%, =W .. respectively.
From (32) and (33}, we get the results immediately.
Corollary 2 The potential vector u={(g, r)"is a finite gap, namely, it satisfies some sta-
ticnary nonlinear evolution equation
N
SaXia =10 or zNjﬂ.fc”.. =0 (NZ=0), (36)
k=

R0

if and only if L

[iﬂswu-a, L]'= 0, L= L{u, 1)

b=

[iﬁﬂ'ﬁv—n L]= 0. L=1L{u,l) (N=0, 37

=
where m, A (0<Ck<{N) are some constants.

As a special case of Theorem 4, we obtain the commutator representations for the Mkdv hi-
tarchy if letting ¢=0.
Corollary 3 The Mkdv hierarchy of equations

T:=J%' m=0.1.2.'" (33)
have the commutator representations
L!zi:“"m. L]. m=09112!"' (39)
with
0 r+d
L= . 40
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- %3_]1‘(}4—1.: + % %'G;—Ln 0
+ 1 ] aplm’,  (41)
) 0 - 73_ITG;—I.: + TG,*].:
where J =4, =%3—&6"r3. & (j=0,1,=-,m) is recursively determined by the follow-

i.l'lg I"E-La.ﬁons; GJ=EZG)—I. (j=0v192!"')! G—|=0‘l GD=7'-
Remark On the nonlinearization of the spectral problem (1) and its Lax operator algebra,
we have got some results, which are left to a forthcoming paper.
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