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Abstract—From the theory of compressive sensing (CS), we
know that the exact recovery of an unknown sparse signal can
be achieved from limited measurements by solving a sparsity-
constrained optimization problem. For inverse synthetic aperture
radar (ISAR) imaging, the backscattering field of a target is usu-
ally composed of contributions by a very limited amount of strong
scattering centers, the number of which is much smaller than that
of pixels in the image plane. In this paper, a novel framework
for ISAR imaging is proposed through sparse stepped-frequency
waveforms (SSFWs). By using the framework, the measurements,
only at some portions of frequency subbands, are used to recon-
struct full-resolution images by exploiting sparsity. This wave-
form strategy greatly reduces the amount of data and acquisition
time and improves the antijamming capability. A new algorithm,
named the sparsity-driven High-Resolution Range Profile (HRRP)
synthesizer, is presented in this paper to overcome the error
phase due to motion usually degrading the HHRP synthesis. The
sparsity-driven HRRP synthesizer is robust to noise. The main
novelty of the proposed ISAR imaging framework is twofold:
1) dividing the motion compensation into three steps and therefore
allowing for very accurate estimation and 2) both sparsity and sig-
nal-to-noise ratio are enhanced dramatically by coherent integrant
in cross-range before performing HRRP synthesis. Both simulated
and real measured data are used to test the robustness of the ISAR
imaging framework with SSFWs. Experimental results show that
the framework is capable of precise reconstruction of ISAR images
and effective suppression of both phase error and noise.

Index Terms—Compressive sensing (CS), inverse synthetic
aperture radar (SAR) (ISAR), radar imaging, sparse stepped-
frequency waveform (SFW) (SSFW).

I. INTRODUCTION

MODERN INVERSE synthetic aperture radar (SAR)
(ISAR) is a wonderful tool for target identification and

classification and has robust performance under all-weather cir-
cumstances and the ability of interference suppression. There-
fore, ISAR imaging could be utilized in many military and
civilian applications including moving-target recognition, air-
craft traffic control, and air/space surveillance. For these ISAR
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applications, high resolution is usually essential to characterize
target features. Conventionally, the cross-range resolution of
an ISAR image is obtained from the diversity of the radar-
viewing angle to the target and high down-range resolution
is achieved by increasing the system bandwidth. Stepped-
frequency waveforms (SFWs) are able to use the wide radio-
frequency (RF) band of a frequency-agile radar with a narrow-
band receiver. Therefore, SFWs have been widely employed to
increase system bandwidth and achieve high-resolution range
profiles (HRRPs) of targets. In the ISAR systems associated
with SFW, high down-range resolution is handled from a series
of short monotonic and continuous pulses transmitted with a
fixed pulse repetition frequency (PRF), where each pulse is
equipped with a frequency-modulated (FM) signal. A sequence
of FM pulses, stepped in frequency by a fixed amount, is
called a burst. High range resolution is achieved by coherently
synthesizing subpulses of a burst into a single wideband signal,
and therefore, here, we do not require the wide instantaneous
bandwidth [1], [2]. The enhancement of range resolution from
SFWs provides better performance of imaging and feature ex-
traction [3]–[5]. Thus, SFWs can be applied to furnish imaging
capability as well as improving performance for the narrowband
radar systems. However, SFW ISARs are sensitive to phase
errors and several significant error sources can corrupt the phase
coherence of subpulses, including radial motion inducing phase
change, atmospheric effects, and hardware instabilities. To
compensate phase error for high-resolution image generation,
some approaches have been proposed recently [6]–[8].

The ISAR with SFW yields wide synthetic bandwidth at
the cost of longer observing time and has a normally shorter
functional range (due to the high PRF) than that of a con-
ventional wideband radar. The high PRF is usually applied in
ISAR with SFW to get enough coherent bursts, but it generates
range ambiguity for farther target returns and has a limitation in
detection range due to the short pulse duration for accumulation
gain. In the cases of low and median PRFs, the ISAR with
SFW suffers from very long observing time. However, the
multifunctional radars often have other critical activities in
addition to imaging, such as searching and target tracking. As
a result, observing time for each target is usually limited. Fur-
thermore, in a long observing interval, both target oscillations
and radial motions of ISAR with SFW can seriously distort
the coherence of subpulses and thus degrade the performance
of profile synthesis processing. Another fragile aspect of the
conventional SFW radar is its sensitivity to interference. In
real situations, radars often encounter strong interference, such
as RF interference, self-induced interference, artificial interfer-
ence, etc. [9], [10]. Therefore, some portions of subpulses of a
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burst may be unusable due to these interferences. Consequently,
it can be quite difficult to generate well-focused imagery even
if most subpulses of the burst are clean. To alleviate the
constraints imposed on ISAR with SWF during the observing
time and sensitivity to interference, a natural extension is to
employ the so-called sparse SFWs [11]. Radar systems with
sparse SFWs are as simple as the conventional SF radar but
have some significant advantages. Obviously, in a sparse SFW
radar, a burst would have less subpulses due to the vacancy
in frequency bands. As a result, the observing interval for
collecting burst signal is proportionally short and also improves
coherence of subpulses. Interference sources can be directly
overcome in sparse SFW radars by avoiding the interference
frequency bands. So, sparse SFW radars can operate in dense
electromagnetic environments. These superiorities make sparse
SFWs a novel technique for modern radar applications. In
the procedure for using sparse SFWs, some essential elements
should be taken into account. First, we need a sparse SFW
synthesizer for HRRP and an approach for the corresponding
phase-error compensation. Conventional SF synthesis methods
are based on Fourier transforms. If we directly apply them to
sparse SFWs processing, the presence of high sidelobes and
grating lobes causes a dramatic degradation of image quality. In
order to reduce sidelobes and grating lobes caused by missing
frequency bands, some new algorithms have been proposed.
In [11], the sequence CLEAN (S-CLEAN) approach was suc-
cessfully applied to form a high-resolution image with sparse
frequency waveforms. The bandwidth extrapolation technique
leads a linear prediction model to extrapolate the band va-
cancy coherently while the spectral estimation technique is
used to estimate model coefficients [12]. Super spatially variant
apodization is another alternative approach to reconstruct a full-
band spectrum using part of frequency samples. It has proven
to be effective in sparse aperture filling [13] and resolution
enhancement for high-resolution SAR imaging [14]. However,
direct application of these methods to fulfill the sparse subbands
encounters difficulties from both noise and model errors. In the
range profile synthesis of sparse SFWs, phase error from target
motion and other sources is inevitable but difficult to overcome.
In general, the high quality of an ISAR image relies on the
2-D coherent accumulation to provide a high signal-to-noise
ratio (SNR). Moreover, SNR gain is proportional to the amount
of the signal accumulated. Because spare SFWs provide much
less measurements than full frequency-band waveforms do, the
image, generated by sparse SFWs, may be with low SNR and
sharpness. As a result, a significant aspect in radar imaging
with sparse SFWs is to overcome the image blurring and strong
noise. This should be carefully taken into account.

ISAR imagery demonstrates the locations and amplitudes of
strong scattering centers for a target scattering electric field in
the range–Doppler (RD) plane, which represents the reflectivity
of the target. Dominant scattering centers usually take up only
a fraction of the whole bins of the RD plane, while signals from
weak scattering centers contribute little to image formation. In
this sense, the ISAR image is spatially sparse. Sparsity of an
image can be exploited to achieve superresolution, denoising,
and feature extraction [15]. In particular, the theory of com-
pressive sensing (CS) or compressed sampling tells us that

an unknown sparse signal can be exactly recovered from a
very limited number of measurements with high probability
by solving a convex l1 optimization problem [16]–[18]. In the
context of radar signal processing, CS has recently attracted
much attention since one can obtain better performance and
easier data acquisition and storage schemes. In [19], a CS-based
ISAR imaging algorithm is proposed to estimate locations of
scattering centers from very limited measurements, and in [20],
the algorithm is improved by the weighted l1 optimization. For
a SAR image, the recovery with an optimized graph-structured
dictionary is used to estimate the migratory scattering in wide-
angle imaging [21]. In [22], a novel data acquisition and imag-
ing method are presented for stepped-frequency continuous-
wave ground-penetrating radars by exploiting spatial sparsity
of strong targets underground. CS also has been successfully
utilized in 3-D SAR reconstruction [23], [24]. All these works
suggest to us that exploiting sparsity is a novel and very helpful
tool in radar imaging. In the case of ISAR imaging with sparse
SFWs, which is studied in this paper, the major difficulty is
that the reconstruction of a high-resolution image is an ill-
posed problem with mathematical uncertainty involved due
to portions of missing frequency bands and model errors. In
this paper, we propose a new framework for ISAR imaging
with sparse SFWs by exploiting the intrinsic sparsity of target
backscattering field.

The main features of our framework are as follows.

1) The sparsity of an ISAR signal in RD domain is used to
construct a penalty function to recover synthetic HRRP
with sparse SFWs. It can be also applied to the conven-
tional SFWs.

2) It counts for all kinds of phase errors for HRRP synthesis
without constrictions on phase formation.

3) It allows high-quality ISAR imaging with sparse SFWs
under low SNR conditions.

4) A new scheme for the motion estimation is proposed to
ensure accurate translational motion compensation.

5) The computational load is relatively high. We use conju-
gate gradient (CG) and fast Fourier transform (FFT) im-
plementation to accelerate the estimation of phase error.
However, it is still more time-consuming compared with
conventional SFWs processing based on FFT. We may
need a deeper study for the real-time implementation.

The organization of this paper is as follows. Section II
introduces the received-signal model of sparse SFW and its
HRRP synthesis by exploiting signal sparsity. In Section III, a
novel compensation method is proposed to handle model errors
and parameter selection, and in Section IV, we deal with ISAR
imaging. Experimental results to data processing, both real and
simulated, are given in Section V to show the effectiveness of
the proposed approach.

II. SPARSE SFW AND HRRP SYNTHESIS

A. Sparse SFW and Signal Model

A general SFW consists of a sequence of N narrowband
pulses with carrier frequencies that increase from pulse to pulse.
The carrier frequencies are indicated with fn = f0 + n ·Δf ,
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Fig. 1. Time–frequency profile of a burst for full-band SFW.

Fig. 2. Time–frequency profile of a burst for a sparse SFW (with only half
subpulses of the full band waveform).

where n = 0, 1, . . . N − 1, f0 is the fundamental carrier
frequency, and Δf is the bandwidth of subpulse and usually
equals the frequency step in the case of full-band SFW, so
that N is the number of transmitted frequencies. Therefore, the
analytic transmitted signal is

sT (t) =

N−1∑
n=0

x(t− nTR) exp [j2π · fn · (t− nTR)] (1)

where x(t) is the complex envelope of the narrowband transmit-
ted pulse and TR is the pulse repetition interval. The total time
length of the SFW is (N − 1)TR + Ti, where Ti is the pulse
duration of a transmitted subpulse. The time interval N · TR

represents the coherent processing interval (CPI) required to
synthesize an HRRP. The modulation form of x(t) can be a
simple rectangular pulse or a linear FM (LFM) pulse signal.
Without loss of generality, we use the LFM waveform

x(t) = rect

(
t

Ti

)
· exp(jπγt2) (2)

where the chirp rate is γ = Δf/Ti and, thus, the bandwidth
of a subpulse equals the frequency step. Fig. 1 shows the
time–frequency characteristics of a full-band LFM-SFW in a
burst, and B stands for the synthetic bandwidth. A sparse SFW
can be directly expanded from the full-band SFW: If only
portions of the full-band subpulses are transmitted, a sparse
SFW is obtained. For example, by transmitting a subpulse every
second for a burst such as Fig. 2 shows, we have N/2 (N
is assumed as an even integer) subpulses in a burst, and this
equally halves the processing interval required (from N · TR

to (N · TR)/2). In sparse SFWs, only a subset of frequency
bands is measured and the subset can also be selected evenly

or randomly from a full-band SFW burst. To make notations
clear, the carrier frequencies of a spare SFW are denoted by
fsm = f0 +G(m) ·Δf , where G is a subset of [0 : N − 1]
with |G| = M and m runs from 1 to M and represents the
frequency sparse degree of the SFW. Then, a sparse SFW can
be expressed in the following form:

ssT (t) =

M−1∑
m=0

x(t−mTR) exp [j2πfsm(t−mTR)] . (3)

The degree of a sparse SFW is defined by

α =
M ·Δf

B
(4)

where B is the synthesis bandwidth of the sparse SFW. Obvi-
ously, the generation of a sparse SFW is as simple as that of the
conventional SFW for a radar system. Therefore, it is very easy
to furnish the high-resolution imaging ability to some active
radar systems operating with narrow bandwidth waveforms,
with only nominal modifications. In addition, a sparse SFW
has shorter time for data acquisition than conventional SFW
radars. Another advantage is that the sparse SFW is capable
of significantly reducing frequency interference of external RF
sources. With the prior information of interferences, a sparse
SFW radar system would be programmed to skip over the
frequency bands with interferences so that clean and high SNR
signals can be received.

Assuming that a target is composed of K dominant scatter-
ing centers with complex backscattering coefficients ak, k =
0, 1, . . .K − 1, then the signal is given by

s(t) =

K−1∑
k=0

ak · ssT [t− τk(t)] + n(t)

=
K−1∑
k=0

ak

M−1∑
m=0

x [t− τk(t)−mTR]

· exp {j2πfsm · [t− τk(t)−mTR]}+ n(t) (5)

where τk(t) = 2Rk(t)/c stands for the time delay of the kth
scattering center and n(t) is the additive noise. Suppose that the
time delay makes a weak change within a subpulse. After apply-
ing the “stop-and-go” model and imposing τk(t) ≈ τk(mTR),
where t̂ = t−m · TR, t̂ ∈ [0, TR], then the signal expression
of the mth sweep can be rewritten as

Sm(t̂) =

K−1∑
k=0

ak · x
[
t̂− τk(mTR)

]
· exp

{
j2πfsm ·

[
t̂− τk(mTR)

]}
+ nm(t̂) (6)

where nm(t̂) is the additive noise corresponding to the mth
sweep. Therefore, the received signal of the mth sweep can be
expressed in the frequency domain as follows:

sm(f̂) =

K−1∑
k=0

ak ·X(f̂)

· exp
{
−j2π · [fsm + f̂ ] · τk(mTR)

}
+ nm(f̂) (7)
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where f̂ ∈ [0,Δf ] is the frequency corresponding to t̂ and
X(f̂) is the Fourier transform of x(t̂). By multiplying (7) by
X∗(f̂) (∗ denotes conjugate) and ignoring some constants, we
obtain the approximated expression for the mth subpulse in
the range frequency domain, which is deduced by principle of
stationary phase [25]. It is given by

sfm(f̂) =

K−1∑
k=0

ak · rect
(

f̂

Δf

)

· exp
{
−j2π · [fsm + f̂ ] · τk(mTR)

}
+ nm(f̂)

=

K−1∑
k=0

ak · rect
(

f̂

Δf

)

· exp
{
−j2π · [fsm + f̂ ] · τk(0 · TR)

}
· exp [j · (δm + φm)] + nm(f̂) (8)

where δm = −2πf̂ · [τk(mTR)− τk(0 · TR)] and φm =
−2πfsm · [τk(mTR)− τk(0 · TR)] denotes phase error for
the mth subpulse. Both δm and φm degrade the performance
of HRRP synthesis, but they have different meanings. δm
stands for the range migration errors resulting from the scatters
possibly moving out of a range cell during a burst acquisition
time. For coherent radar systems, by using conventional
methods for an SFW [6]–[8] or range profile alignment
techniques [26]–[28], this error can be adjusted to an optimal
degree so that the residual error is restricted within some
proportions of a range cell. The quantity φm stands for the
phase error among subpulses of a burst from target bulk
motion, which is the major source degrading HRRP synthesis
performance. Detailed analysis on φm can be found in [6].
In a later part of this paper, we will propose a new flow for
the estimation of translational motion for echoes from sparse
SFWs, which is anticipated to be accurate and robust to
noise. The phase φm can be expended to include other phase
errors, such as jitter of analog-to-digital converter, motion
measurement inaccuracies, instabilities of the waveform
generator, and some inherent approximations. In the SFW
application, the major difficulty for generating the HRRP is
how to compensate for φm. For simplicity, let us assume that
δm is corrected ideally. Then, (8) can be rewritten as

sfm(f̂) =

K−1∑
k=0

ak · rect
(

f̂

Δf

)

· exp
{
−j2π · [fsm + f̂ ] · τk(0 · TR)

}
· exp(j · φm) + nm(f̂). (9)

B. HRRP Synthesis by Exploiting Sparsity

In the case of full frequency-band SFWs, the reconstruction
of the HRRP can be achieved by different techniques. There
are two classical algorithms used for reconstructing a synthetic
HRRP. One is where the range profile bins of all subpulses are

sampled and then an inverse discrete Fourier transform (IDFT)
is applied along the stepped frequency [6], and the other one
involves arranging the subpulses in the frequency domain to
obtain a wideband spectrum and then the HRRP is outputted
after inverse FFT (IFFT). However, in the case of sparse SFWs,
conventional methods for HRRP synthesis generate high side-
lobes and grating lobes, which contaminate the HRRP dramat-
ically and submerge real scattering centers. On the other hand,
the theory of CS will enable us to reconstruct a sparse signal
exactly from very limited measurements with high probability
by solving a convex l1 norm optimization problem [16]–[18].
The essence of CS lies in exploiting the sparsity of the objective
signal by l1 norm regularization. Before presenting the HRRP
synthesis by exploiting sparsity, let us introduce the CS briefly.
Let y ∈ CL denote a finite signal of interest and a basis matrix
Φ = {ϕ1,ϕ2, . . . ,ϕL} which satisfies y = Φθ, where θ is
a K-sparse vector (namely, it can be approximated by its K
largest coefficients or its coefficients following a power decay
law with K strongest coefficients [13]). One may reduce the
measurement in the form of s = Ay from N dimensions to
M dimensions, where A ∈ CL×L (L < L) is the measurement
matrix satisfying Ψ = AΦ (namely, the dictionary) and Ψ
has the restricted isometry property (RIP) of order K [13].
Dictionary Ψ is required to satisfy K-RIP with a restricted
isometry constant (RIC) δK ∈ (0, 1), which generally indicates
that the optimal recovery of y can be done by the measurement
L ≥ O(K · logL). The K-order RIC of Ψ can be defined as
the smallest quantity satisfying

(1− δK)‖θ‖22 ≤ ‖Ψθ‖22 ≤ (1 + δK)‖θ‖22. (10)

This property requires the dictionary’s behavior to be like
an isometry system on the K sparse signals. Each subset of
K columns, extracted from Ψ, is approximately orthogonal
(but, exactly orthogonal is almost impossible since there are
more columns than rows in Ψ). It is not difficult for us to
understand that the degree of orthogonality is represented by
the RIC; a small RIC means strong orthogonality between any
two columns and a RIC of 0.5 is usually an optimal choice
for a stable CS performance. It is already proven that if L ≥
O(K · logL), then the largest K coefficients can be estimated
from y with overwhelming probability by solving a convex
problem as

min (‖θ‖1) , subject to ‖s− Fθ‖2 ≤ ε (11)

where ‖ · ‖p denotes lp norm and min(·) denotes the mini-
mization and ε is the noise level. Clearly, some elements are
specified in the CS: 1) a basis to support sparse representation of
signal; 2) solver to the optimization problem; and 3) a measure-
ment operator to provide considerable noncoherence among
columns of the dictionary. In our case, i.e., ISAR imaging
with a sparse SFW, in order to get strong incoherence of Ψ,
the waveform design should be accounted carefully, which we
discuss in the following.

An HRRP determines the ranges and amplitudes of the strong
centers of the target. Strong scattering centers usually take up
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Fig. 3. Geometry of sparse SFM signal.

only a fraction of whole range bins, while signals from weak
scattering centers contribute little to the HRRP formation. For
our convenience, let us write the signal model of a sparse SFW
burst of (7) in a compact vector form

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sf0
sf1

...
sfm

...
sfM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= E ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1
...

Fm
...

FM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· θ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n0

n1
...

nm
...

nM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=E · F · θ + n (12)

where E is the diagonal matrix corresponding to phase er-

ror and F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1
...

Fm
...

FM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the partial Fourier matrix whose

component Fm corresponds to the mth subpulse. They are
presented in detail in the following. Hereafter, θ is redefined
as the complex HRRP that we want to recover. Let f̂ = [0 :

h− 1] ·Δf̂ be the discrete form of the range frequency extent
of a subpulse. Here, Δf̂ is the frequency interval and the
length of sfm is assumed as h. Then, the size of frequency
measurement vector s and noise n is (L = M · h)× 1. And
the length of HRRP θ is assumed to be L. Then, the size of
matrix F is (M · h)× L and that of E is (M · h)× (M · h). In
the application of sparse stepped-frequency-modulated (SFM)
waveforms, we have L < L. For clarity, we use Fig. 3 to show
the geometry of a burst of the sparse SFM signal.

Suppose the frequency index of a full-band waveform is
[0 : L− 1] and the mth subpulse consists of h frequency bins
(whose index extent is from Tm to Tm + h− 1), where 0 ≤
Tm ≤ L− h. In addition, we have

Fm =

⎡
⎢⎢⎣
1 ωTm · · · ω(L−1)Tm

1 ωTm+1 · · · ω(L−1)(Tm+1)

...
...

. . .
...

1 ωTm+h−1 · · · ω(L−1)(Tm+h−1)

⎤
⎥⎥⎦
Tm×L

and ω = exp

[
−j

2π

L

]
. (13)

Fm is the partial Fourier matrix corresponding to the mth
subpulse

E = diag

⎡
⎢⎢⎢⎢⎢⎣

e1
...

em
...

eM

⎤
⎥⎥⎥⎥⎥⎦
L×L

(14)

where

em = [exp(j · φm), exp(j · φm), . . . , exp(j · φm)]T1×h (15)

corresponds to the phase error of the mth subpulse. Moreover,
[·]T denotes the matrix transpose. Based on the signal model of
(12), we develop the sparsity-driven HRRP synthesis in the next
section. In this section, we develop the sparsity-driven HRRP
synthesis based on Bayesian CS (BCS) [29] and neglect the
phase error for simplicity. Generally, the components of n are
approximated as a zero-mean complex Gaussian noise, namely,
its imaginary and real parts (denoted by nr and ni, respec-
tively) are subject to an independent Gaussian distribution with
unknown variance σ2. The probability density function of n is
given by

P (n|σ2) =

[
(2πσ2)−

L
2 exp

(
− 1

2σ2
‖nr‖22

)]

·
[
(2πσ2)−

L
2 exp

(
− 1

2σ2
‖nr‖22

)]

=(2πσ2)−L exp

(
− 1

2σ2
‖n‖22

)
. (16)

According to BCS, the sparsity of θ can be formulated by
placing a sparseness-promoting prior on it. This sparseness
prior is usually independently represented by a Laplace density
function [29], which can be given by

P (θ|γ) =
(γ
2

)L

exp (−γ‖θ‖1) (17)

where γ corresponds to the scale parameter of the Laplace dis-
tribution. Therefore, HRRP synthesis with SFWs is transferred
into a classical problem to estimate θ from noisy observation s.
For this purpose, the maximum a posteriori (MAP) estimator is
used, which is given by

θ̂(s) = arg max
θ∈CL

[P (θ|s)] . (18)
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Using the Bayes rule, we have

θ̂(s) = arg max
θ∈CL

[
P (s|σ2) · P (θ|γ)

]
. (19)

Clearly, (19) is also equivalent to

θ̂(s) = arg max
θ∈CL

{
log

[
P (s|σ2)

]
+ log [P (θ|γ)]

}
. (20)

Substituting (16) and (17) into (20), the MAP estimator be-
comes

θ̂(s) = arg max
θ∈CL

{
− 1

2σ2
‖s− Fθ‖22 − γ‖θ‖1

}

= arg min
θ∈CL

{
‖s− Fθ‖22 + λ‖θ‖1

}
(21)

where λ = 2σ2γ. In (21), the l2 norm preserves the data fidelity
of the solution and the l1 norm minimizes most elements of
θ with a few large ones in accordance with the sparsity of
HRRP. The optimization problem can be effectively solved by
some algorithms and software [30], [31]. However, in practice,
motion-induced range migration and phase error should be
made up before the HRRP synthesis. In particular, the phase-
error compensation is a significant task to be considered in
the HRRP synthesis. A sparsity-driven HRRP synthesizer is
proposed in this paper to jointly estimate phase error and
reconstruct the HRRPs.

III. HRRP SYNTHESIS AND PHASE-ERROR

COMPENSATION

A. Statistical Estimation for Noise and HRRP

In the issue of HRRP synthesis with a sparse SFW, the major
difficulty is to compensate the phase error and accelerate the
processing. Taking the phase error into account, we reformat
the optimization problem in (21) as follows:

θ̂(s) = arg min
θ∈CL

{
‖s−EFθ‖22 + λ‖θ‖1

}
. (22)

Clearly, the sparsity coefficient λ is directly related to the
statistics of both the noise and HRRP. For an optimal parameter
λ, prior knowledge of noise and HRRP statistics is required.
However, in practice, it is often unknown and should be es-
timated from data. In this sense, we convert the problem of
selecting λ into obtaining the statistical information of noise
and HRRP.

In radar signal processing, estimation of the noise statistics
is available since Gaussian noise usually distributes evenly, and
there are many range cells containing only noise. Given enough
noise samples by those pure-noise cells, we can estimate σ2

with high accuracy. Therefore, the problem to estimate noise
variance is shifted to discriminating noise cells from cells con-
taining signal components. Meanwhile, the scale parameter of
the Laplace distribution placed on HRRP can be estimated from
the signal bins. For sparse SFM waveforms, the noise samples
can be extracted from the coarse range profiles generated by

subpulses. The estimation of the statistical parameters of noise
and HRRP contains the following three steps.

1) Coarse range profiles are generated by subpulses. More-
over, noncoherent summing is applied to them to generate
high SNR range profiles.

2) Noise and target supports are separated by thresholds.
Then, the noise and target samples are extracted from
coarse range profiles.

3) Estimation of σ2 and γ is performed by using the selected
samples via maximum likelihood (ML) estimation. More-
over, parameter λ is obtained straightforwardly.

In step 1), we first generate coarse range profiles by IDFT.
Generally, each subpulse provides enough frequency diversity
to separate the scatters of a target into different range bins.
Therefore, separating the bins containing the target signal from
those with pure noise could be treated as a task of target detec-
tion with a wideband waveform. It is not difficult to understand
that once we determine the range bins containing the noise only;
the noise variance will be estimated approximately. Meanwhile,
estimation of λ can be obtained from the target bins. Separating
range cells containing the signal from those only containing
noise is practicable by their energy difference, since signal
energy is concentrated only on several range cells while noise
distributes over all cells evenly after range compression. To
enhance the SNR, we can sum up the amplitude of coarse range
profiles incoherently in this step.

Step 2) is the detection process to separate noise and target
in the summed range profile. Inspired by the ordered-statistics
constant-false-alarm-rate (CFAR) detector [32], we can order
range cells by their energy and determine the range cells with
largest energy as signal cells and the rest as noise samples. With
the prior knowledge of target size, the amount of range cells
containing the signal (corresponding to detection order) could
be determined approximately. In this paper, an energy-based
threshold is proposed to perform a selection of noise samples
adaptively. The upper threshold for the energy of range cells to
select a noise cell is given as

Thres = Em +

[
h∑

l=1

(El − Em)2

h− 1

] 1
2

(23)

where El represents the energy of the lth range cell (there are
h range cells for a coarse range profile) and Em is the mean
energy of all range cells of the summed range profile. When
the energy of a range cell is below the threshold, it is deter-
mined as a pure-noise range bin. This energy-based threshold
is composed by two terms: the energy mean and the square
root of energy variance. Clearly, the threshold is adjusted with
SNR adaptively: Given constant signal energy, in high SNR
situations, we usually have relatively low threshold to maintain
low false-alarm rate, whereas in low SNR situations, we get a
high threshold, avoiding rejection of too many pure-noise range
bins. For clarity, we give a detection result on the averaged
coarse range profile of the Yak-42 data in Fig. 4, and the SNR
is set as 10 dB. Clearly, the target support is discriminated from
the noise bins effectively by using the adaptive threshold.
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Fig. 4. Discrimination of target from noise in the coarse range profile.

By the energy-based threshold, we usually can extract a large
number of noise bins from the summed range profile. Then, we
need to determine the range bins containing dominant scattering
centers. In order to do so, we use the CFAR detection to get the
target bins. The CFAR threshold is given by

TCFAR = meann · η (24)

where meann represents the amplitude mean of noise samples
and η is a constant scale factor used to achieve a desired con-
stant false-alarm probability under a given sample number. For
an extensive mathematical study of a CFAR detector, [32] can
be consulted. To calculate the constant scale factor, available
software [33] can be used. Then, bins with amplitudes larger
than the CFAR threshold are determined as strong scattering
components, by which we reject some range bins with weak
signals and noise from the target support. In the following
experiments, the CFAR is set as 1%. Once the range bins
containing the strong signal are discriminated from noise bins
by the CFAR threshold, the support of strong signal in the
range profile is determined. For our case of HRRP synthesis
by exploiting sparse SFWs, we are usually interested in strong
scattering centers only and define the ensemble of the indices
of the strong scattering centers as the target support in the
following statistical estimation. It should be emphasized that, in
this step, we incoherently add the amplitude of all coarse range
profiles to generate the coarse range profile with high SNR, and
the noise and target detection is performed on it.

The task in the last step is to estimate σ2 and γ from the
separated noise and signal bins. Since we separate the noise
and from target support in last step, we can extract range bins
from the subband profiles corresponding to the noise indices
as the pure-noise samples. In addition, the target range bins
are determined by the detected target support corresponding to
strong scattering centers. The ML estimate of σ2 is the variance
of all imagery and real parts of pure-noise bins (defined as σ̂2).
Moreover, if we have the HRRP samples, we can estimate γ
as the reciprocal of the amplitude mean of all HRRP bins, in
accordance with the ML estimation. Herein, only having the

subband range profiles in hand, we hence develop an estimator
of γ as

γ̂ =
1

1

L

M∑
m=1

∑
l∈TS |pfm(l)|

(25)

where TS denotes the ensemble of the indices corresponding to
the detected target support and pfm stands for the coarse range
profile corresponding to the mth subband. Finally, we have the
sparsity coefficient as λ = 2σ̂2γ̂.

B. HRRP Synthesis With Phase-Error Removal

After estimating the sparsity coefficient λ from the statisti-
cal parameters of both noise and HRRP, HRRP synthesis is
performed by solving the optimization in (22). Generally, the
strongest scattering centers contain the most essential informa-
tion of the target. The next task is to solve the optimization in
(22) efficiently. At first, in order to overcome the nondifferentia-
bility of the l1 norm around the origin, a useful approximation
[15], [34]–[36] is employed by

‖θ‖1 ≈
L−1∑
i=0

(
|θ(i)|2 + δ

) 1
2

(26)

where | · | stands for the modulus operator and δ is a small
nonnegative parameter. By introducing δ in (26), the nondiffer-
entiability problem of ‖θ‖1 at the origin is overcome. Clearly,
to ensure the approximation as rigid as possible, δ should be set
small. Then, the optimization problem is reformatted as

min

(
‖s−EFθ‖22 + λ

I−1∑
i=0

(
|θ(i)|2 + δ

) 1
2

)
. (27)

In [35] and [36], it has been proven that the approximation of
(26) keeps the correspondence between optimizations in (22)
and (27) and the optimization in (27) also has a unique and
exact solution. Furthermore, this solution tends to that of the
optimization (22) as δ tends to zero. Therefore, if and only
if a very small δ is used in (27), we will obtain a precise
solution by solving (27) instead of (22). In our experiments, an
experiential δ is 1× 10−6 and other values, such as 0.001 and
0.01, also perform well, generating similar results. Therefore,
the selection of δ should be small but with flexibility. A useful
selection of δ is one in a thousand of the noise variance
estimated from data so that it is small enough not to affect the
behavior of the solution. Different from the problem given in
(21), the phase error E in (27) is also unknown and should
be estimated from measurement. Therefore, we need a new
strategy for solving it. The quasi-Newton method with a spec-
ified Hessian update scheme is proven effective and efficient
to solve the regularization optimization problem [15], [34]. For
our topic of HRRP synthesis with phase error, a modified solver
is presented in the following to estimate both HRRP and phase
error simultaneously. Calculating the gradient of the objective
function in (27), we have

∇(θ) = Ĥ(θ)θ − 2 · FHEHs (28)
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where the Hessian matrix is approximately equal to

Ĥ(θ) = 2FHEHEF+ λW(θ) = 2FHF+ λW(θ) (29)

and W(θ) is a diagonal matrix

W(θ) = diag

⎡
⎢⎣ 1(

|θ(0)|2 + δ
)1/2

,
1(

|θ(1)|2 + δ
)1/2

, . . .

1(
|θ(I − 1)|2 + δ

)1/2

⎤
⎥⎦ . (30)

Apparently, the Hessian approximation relies on the objective
variant θ. An iterative solution to (27) is determined through
the following recursion formula:

θ̂(g + 1)=2 ·
[
Ĥ

(
θ̂(g)

)]−1

·
[
FH

(
Ê(g)

)H

s

]

=

[
FHF+

λ

2
W

(
θ̂(g)

)]−1

·
[
FH

(
Ê(g)

)H
s

]
(31)

where θ̂(g) and Ê(g) are the estimations of θ and E, re-
spectively, from the gth iteration. Without prior knowledge of
the phase error corresponding to the mth subband, the initial
value of iteration is φ̂m(0) = 0, m = 0, 1, . . . , (M − 1). The
estimation of phase error φ̂m in the gth iteration is com-
puted by

exp
[
j · φ̂m(g + 1)

]
=exp

[
j · φ̂m(g)

]
· exp

[
j ·Δφ̂m(g + 1)

]
(32)

where the updated exponential term is

exp
[
j ·Δφ̂m(g + 1)

]
=

(
θ̂(g + 1)

)H

FH
m

(
Êm(g)

)H

sfm∣∣∣∣(θ̂(g + 1)
)H

FH
m

(
Êm(g)

)H

sfm

∣∣∣∣
.

(33)

We increase g and go back to the iterative optimization problem
(31) for the next iteration until |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤
ρ, where ρ is a small parameter enough for the predetermined
threshold or that g to reach a predetermined maximum iteration
number. Generally, we set ρ = 0.01 or 0.001 while lower
thresholds will not yield more precise solution but increase the
computational load dramatically. The difference between the
conventional phase-error correction and the current techniques
for SFW in the formulation of HRRP synthesis with phase-error
compensation is that no constraint is imposed on the form of
phase errors. Therefore, our approach might be suitably applied
in wide fields. Another feature of the proposed approach is its
efficiency. Major computational load in each update sources
from the matrix inversion calculation of Ĥ(θ̂(g)) in (31). We
note that the size of Ĥ(θ̂(g)) is L× L and then the matrix
inversion can be implemented with L3/3 + 2L2 ≈ L3/3 flops
through a Cholesky factorization [37]. Moreover, we usually
need several tens of updating iterations in (31) to reach an
optimal convergence, making the proposed method low in

efficiency. The CG algorithm [38] can be applied to accelerate
the processing of matrix inversion calculation in (31). However,
due to the iterative property of CG, its convergence may be
slow as we need to perform the calculation of the linear system
Ĥ(θ̂(g))θ̂(g + 1) = 2 · [FH(Ê(g))Hs] over and over again in
the gth update of (31). In order to improve the efficiency, we
first analyze the properties of the Hessian matrix in (29). Its
main characteristics are listed as follows.

1) Its size is L× L.
2) It is symmetric positive definite.
3) The term FHF corresponds to the partial Fourier matrix,

allowing us to use FFT to implement FHFν (ν denotes a
L× 1 vector) calculation efficiently. The FFT implemen-
tation of FHFν is very simple but effective. We perform
the IFFT to ν and get νt and then set the components
corresponding to the vacant frequency bands to zero and
followed by an FFT. Therefore, taking only the multiple
operations into account, FHFν can be implemented with
about L log2 L flops corresponding to two FFTs.

4) The term W is a diagonal matrix. We can use vector
multiplication w 	 ν to evaluate matrix and vector
multiplication Wν, where w = [(1/(|θ(0)|2 + δ)

1/2
),

(1/(|θ(1)|2 + δ)
1/2

), . . . (1/(|θ(I − 1)|2 + δ)
1/2

)]
T

and 	 denotes the Hadamard multiplication. As a result,
Wν is implemented by only L flops.

The main computational cost of the quasi-Newton solver
to the sparsity-driven optimization lies in the following:
1) iterative update of (31) and 2) the CG solver to the linear
system in each update of (31). For simplicity, we only account
the multiple operations. For the number of the CG iterations
to solve (31) being the NCG case, the computation quantum of
an FFT is NCGL log2 L flops and that of the Hadamard multi-
plication is NCGL flops. Therefore, the computational cost of
CG in solving (31) is about NCGL log2 L flops. Assuming that
there are NQ times of iterations in the quasi-Newton algorithm,
the computation cost of the algorithm implemented by FFT-
based CG is NQNCGL log2 L flops approximately, while the
computational load of calculating matrix inversion through the
Cholesky factorization is about NQL

3/3 flops. Using the FFT-
based CG can accelerate the convergence of the quasi-Newton
solver effectively. For further improvement of efficiency, some
optimization algorithms are available, such that the precondi-
tioned CG algorithms [38], which could reduce the iteration
number of conventional CG. In general, the computational
complexity of the method is not a severe problem given the
availability of computational power today.

C. Experimental Analysis

To analyze the performance of the proposed algorithm, at
least two aspects are counted: its dependence on the waveform
and robustness to noise. According to the CS theory, the perfor-
mance of the recovery of a sparse signal from low-dimensional
measurements depends on the coherence of dictionary. In the
HRRP synthesis with a sparse SFW, the dictionary structure is
closely related to the waveform. It is not difficult to see that
the sparser SFW is, the less frequency observations are, which
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TABLE I
RADAR PARAMETERS

result in strong uncertainty in solving the optimization problem
(22). Another factor, influencing the performance of the HRRP
reconstruction with a sparse SFW is the underlying sparsity of
the signal itself. In fact, the backscattering field of a man-made
target usually has very few strong scattering centers presenting
strong sparsity. However, when the energy of noise increases,
the sparsity of the received signal degrades dramatically. To
show the performance of the proposed algorithm, simulation is
performed in the following. With reference to typical ISAR sce-
narios, the parameters to generate experimental data are based
on a typical SF radar system operating with LFM-SFWs, which
are listed in Table I. A target, composed of six dominant scatter-
ing centers, is simulated. Based on the system parameters, we
need 16 subpulses for a full-band SFW with a CPI of 5.33 ms,
approximately achieving range resolution about 0.47 m.
In the simulation, we assume that each subpulse is sampled
into a vector with h = 64 points, thus providing the HRRP with
L = 1024 bins. In our experiment, we use three types of sparse
SWFs (SSFWs), namely, SSFW1, SSFW2, and SSFW3. Each
one consists of parts of the subpulses of the full-band SFW,
taking one-fourth of the subpulses out from the full-band SFW
evenly and giving the rest to SSFW1. Therefore, SSFW1 con-
sists of 12 subpulses. Moreover, the amount of measurements of
SSFW1 is L1 = 768. Every second subpulse pours to SSFW2,
giving L2 = 512 measurements, and every fourth subpulse goes
to form SSFW3, giving L3 = 256 frequency points. For clarity,
the geometries of the sparse SF waveforms are given in Fig. 5.
The complex white noise of Gaussian distribution is added into
the simulated echoed signals to generate experimental signal
with different SNRs (20, 10, and 5 dB). The radial velocity and
acceleration are set as −100 m/s and −5 m/s2, respectively.
We assume that the range migration error caused by motion
is corrected. In the following experiment, we figure out both
motion-induced phase error and random phase error. We also
analyze the effect of the selection of λ on the sparsity-driven
HRRP synthesis. To evaluate the performance of the estimation
of parameter λ, we give results generated by both the calculated
λ and a experiential constant parameter. The following experi-
ments are run on a personal computer with Core 2.53-GHz CPU
and MATLAB.7.0.1. Furthermore, the sparsity-driven HRRP
synthesizer is solved by using CG implemented by FFT and
Hadamard multiplication.

In the first step, we only consider motion-induced phase
error. Fig. 6 shows the phase error for a sequence of 16
subpulses in a curve form. This phase error produces distortion
and spread of the HRRP. At first, we take λ = 5, δ is set as
one in a thousand of the noise variance, and the iteration is
terminated when |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤ 0.001 for all
SNR and waveform cases, and the results are shown in Fig. 7.
This λ is selected manually after trying many values, and it
should be relatively optimal under these simulation conditions.

Fig. 5. Time–frequency profiles of the SSFWs.

Fig. 6. Phase error caused by target motion.

In Fig. 7, the first row represents the experimental results of
SSFW1 with different SNRs. The second and third rows in
Fig. 7 show the results of SSFW2 and SSFW3, respectively. The
expensed times for all experiment cases with λ = 5 are given
in Table II. It is noted that, for all cases, the consuming time to
generate an HRRP with the sparsity-driven approach is around
1–2 s. Moreover, comparing all these results, we find that all
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Fig. 7. Experimental results of sparse SFWs under different SNRs with λ = 5 (motion-induced phase error).

TABLE II
CONSUMING TIME (IN SECONDS) WITH λ = 5

sparse SFWs provide good performance even in the case of low
SNR, under the setting parameters. As expected, SSFW3 yields
some distortion in the HRRP when SNR decreases to 5 dB
while other waveforms overcome the strong noise effect at the
same time. In the presence of strong noise, the HRRP synthesis
tends to need more time to reach convergence than it does in the
case of high SNR. The computational load also slightly relies
on the amount of frequency measurements. Obtaining an HRRP
with a very sparse SFW may involve a highly computational
complexity.

Then, we still consider the motion-induced phase error in
Fig. 6 and use an adaptive λ obtained by statistical parameter
estimation. According to the statistical estimation of both noise
and HRRP, the values of λ for all waveforms and SNR cases are

TABLE III
PARAMETER λ

listed in Table III. The terminating condition is still |θ̂(g + 1)−
θ̂(g)|2/|θ̂(g)|2 ≤ 0.001. Clearly, parameters are at an extent
of 6–224 corresponding to the noise increase, all larger than
5. As aforementioned, larger λ usually leads to sparser HRRP
and denoising performance. The results by using adaptive λ are
shown in Fig. 8. The arrangement of them is identical to that of
Fig. 7. The consuming times for all cases are given in Table IV.
It is noted that, with an adaptive λ, generating an HRRP with
the sparsity-driven approach is usually faster than with λ = 5.
This indicates that by setting a larger λ, the efficiency of CG is
usually increased. Therefore, we suggest a relatively large λ in
the application of the approach as long as the precision meets
the requirement. From the comparison of Figs. 7 and 8, we also
conclude that the adaptive λ usually achieves better denoising
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Fig. 8. Experimental results of sparse SFWs under different SNRs with adaptive λ (motion-induced phase error).

TABLE IV
CONSUMING TIME (IN SECONDS) WITH λ IN TABLE III

performance at a price of signal energy loss at some degree. For
high contrast image, we think it is acceptable.

In the second step, we consider the motion-induced phase er-
ror along with errors from other sources. Thus, we assume that
the phase error is random. Fig. 9 shows the random phase error
for a sequence of 16 sweeps. Random phase error produces
both profile distortion and false scatters, which make the HRRP
useless. By exploiting the sparsity of the HRRP, we reduce the
phase error to get the well-focused HRRP. At first, we still take
λ = 5, δ is equal to one in a thousand of the noise variance, and
the iteration is terminated when |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤
0.001. In Fig. 10, the experimental results of all SNR and
waveform conditions are shown. From these results, all sparse

Fig. 9. Random phase error.

SFWs provide good performance, even in the case of low SNRs.
The consuming time using the constant parameter is listed in
Table V. The computational load, dependent on waveform and
SNR, is identical to the results listed in Table II. Moreover, we
also note that, in the case of random phase error, the sparsity-
driven approach usually takes more time to go over it than in
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Fig. 10. Experimental results of sparse SFWs under different SNRs with λ = 5 (considering random phase error).

TABLE V
CONSUMING TIME (IN SECONDS) WITH λ = 5

the motion phase-error case. It is not difficult to understand
that, in the random-phase case, the initialized solution is much
farther than that in the linear phase-error case; therefore, the
approach needs more iterations to get convergence. This means
that the computational load increases as complex error (in-
cluding both phase error and additive noise) is present. It is
indicated that if precise phase-error correction is performed
before using the sparsity-driven approach, its efficiency can
be improved dramatically. This motivates our work of motion
compensation in ISAR imaging in the next section. Also, this
experiment confirms that the proposed method is applicable in
wide scenarios and imposes no constraint on the formal phase
error.

We still consider the random phase error and use adaptive
λ. In this experiment, the adaptive parameters are identical
to those listed in Table III. Furthermore, the terminating con-
dition is still |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤ 0.001. The results
are shown in Fig. 11, and the consuming times are listed in
Table VI. From the comparison of Figs. 10 and 11, we draw a
similar conclusion on using the adaptive λ as in the comparison
of Figs. 7 and 8.

IV. ISAR IMAGING WITH SPARSE SFWS

A. ISAR Imaging by Enhancing SNR and Sparsity

Conventional ISAR image processing with SF has three
steps. First, the HRRP synthesis is performed, in which the
target’s motion should be estimated to avoid blurring and dis-
tortion of the HRRP. Then, the motion compensation including
range alignment and phase adjustment is followed up to remove
shift and phase errors among HRRPs. Finally, a 2-D high-
resolution image is generated by compression in the cross-
range, which is usually implemented by FFT. In our case, ISAR
imaging with a sparse SFW, the key problem is to reconstruct
the HRRP from sparse frequency measurements with phase
errors. Given limited frequency samples containing noise,
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Fig. 11. Experimental results of sparse SFWs under different SNRs (considering random phase error).

TABLE VI
CONSUMING TIME (IN SECONDS) OF ADAPTIVE λ

generating the HRRP in a higher dimension is difficult.
Through the exploitation of sparsity, the HRRP can be recov-
ered from noisy sparse frequency (also see the last paragraph).
Actually, an underlying condition for a successful HRRP syn-
thesis is that the HRRP is composed of very limited dominant
scattering centers. Even so, a truly subtle problem is how to
estimate a considerable number of strong scattering centers
from a limited set of SF subpulses to form the HRRP by the
l1-constrained optimization. The CS theory tells us that exact
recovery from limited measurements can be carried out only
for sparse signals. Nevertheless, the uncertainty involved in
solving the optimization problem dramatically increases when
strong noise is present due to degradation of signal sparsity.
It is not difficult for one to understand that the lower SNR

of the measurements is, the more difficult it is to obtain the
precise recovery of the HRRP with sparse SFWs. Due to the
aforementioned facts, the SNR enhancement should be taken
into account before performing the HRRP synthesis for the
ISAR imaging with sparse SFWs.

Modern radar systems employ coherent integrals for effec-
tive detection and identification of weak signals submerged in
strong noises. The coherent integral is usually implemented by
the FFT banks. In this way, signal energy is fully accumulated
to improve the SNR, while the noise energy is still spreading
over the whole space. As we know, the improvement of the
SNR gain is proportional to the amount of data in coherent pro-
cessing: If the number of data doubles, the SNR approximately
increases by 3 dB. Based on this, we are now proposing a new
framework to improve the performance of ISAR imaging with a
sparse SFW. In the framework, we modify the coherent integral
to each subpulse in the cross-range before the HRRP synthesis,
which provides a high SNR gain for measurements. Another
benefit from the coherent integral is the enhancement of the
HRRPs’ sparsity to recover the ISAR image. The coherent
integral resolves dominant scatters in sets of Doppler cells.
Each Doppler cell contains only a few scatters. Therefore,
both accuracy and efficiency of the HRRP synthesis for each
Doppler cell are dramatically improved. The framework of the
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ISAR imaging with sparse SFWs runs in the following three
steps.

1) Subpulses in each subband is extracted from bursts and
arranged into a consistent set. Then, for each group,
range alignment and phase compensation are applied to
eliminate the bulk motion.

2) The FFT in the cross-range is employed for each group to
generate subband ISAR images.

3) Noise variance estimation is performed by using the
coarse 2-D images. Fourier transform in range is taken
to transform each subband ISAR image into the range fre-
quency and Doppler domain. Finally, the HRRP synthesis
is performed in (18) to overcome the residue phase error
and achieve the high resolution of a 2-D ISAR imagery.
In the HRRP synthesis, parameter λ calculated for each
Doppler bin independently.

Step 1) is essential when one applies sparse SFWs to generate
the high-resolution ISAR image, as motion compensation plays
a significant role in both the HRRP synthesis and the ISAR
imaging. In step 1), on the basis of the assumption that the radar
system is coherent, time delays and high-order phases caused
by target bulk motion are compensated to each subband group.
For the HRRPs, conventional range alignment methods [26]–
[28] are employed to estimate time delays of range profiles and
thus obtain motion parameters (velocity and acceleration) of
the moving target by low-order polynomial fitting. However,
the accuracy of motion estimation degrades by using these
techniques in the subband range profiles due to the resolution
limitation of subband range profiles. Hence, we need to com-
bine some motion approaches successively in order to get a
precise estimation of a bulk motion from subband data sets.

First, we estimate coarse velocity by range alignment tech-
niques. Then, we can obtain the shift of range profiles that
matches a polynomial function whose first order term gives
the coarse velocity. Based on the coarse velocity, the range
cell migration of range profiles would be reduced to a nominal
degree. Second, a cross-correlation function among adjacent
range profiles is used to evaluate acceleration. Adjacent cross-
correlation is proven effective to estimate translational motion
of the moving target robustly, particularly for the acceleration.
The acceleration estimation can be transferred into a problem
to evaluate high-order phase terms by autofocus techniques
[26], [39]–[42]. Then, by fitting the phase function into a
two-order polynomial function, the second-order coefficient is
corresponding to the acceleration of the target. Generally, the
estimation based on the adjacent cross-correlation is capable
of sustaining strong noise due to the application of coherent
accumulation, and its efficiency is high by applying FFT to
calculate the adjacent cross-function [43]. Finally, the residual
velocity is obtained from the Doppler centroid of the target in
the RD plane. It should be pointed out that the major velocity
effect is eliminated by the compensation with the coarse veloc-
ity, but the residual effect may still not be nominal. In low PRF
cases where the residual velocity is great, the Doppler centroid
may be ambiguous. To resolve the ambiguity of the Doppler
centroid, the multifrequency characteristics of sparse SFWs
should be taken into account to resolve the Doppler centroid

ambiguity [44]–[46]. To resolve the ambiguity of Doppler
centroids, the Chinese remainder theorem (CRT) [45] can be
applied. To improve the performance of CRT in the presence
of strong noise, improvement has been done in [46]. Herein,
we propose another robust method to solve this ambiguity.
Let Dm = 2fsmΔv/c be the unambiguous Doppler centroid
caused by residue velocity (Δv) of the mth subband group.
Due to the low PRF , we have the ambiguous estimate as
ΔD̂m = mod(Dm, PRF ) + em and em denotes the estimate
error. After coarse velocity compensation, the residue velocity
is relatively small. The ambiguity number for each carrier
frequency is equal to U (U is an integer). Clearly, if we know
the ambiguity number, Δv can be estimated from ΔD̂m, which
is given by

Δv̂(N) =
1

M

M∑
m=1

(U · PRF +ΔD̂m) · c
2fsm

. (34)

Due to the random property of the estimate error, the averaging
processing in (34) is capable of providing a precise estimate
of residue velocity. In this sense, we can shift the problem
of estimating residue velocity to a problem of estimating the
ambiguity number. Using (34), a penalty function of ambiguity
number is developed as

P (u) =
M∑

m=1

(
(u · PRF +ΔD̂m) · c

2fsm
−Δv̂(u)

)2

. (35)

Clearly, the penalty function reaches its minimum at U . This
ambiguity-resolving approach is simple but robust. Further-
more, the real residue velocity is retrieved accurately by (34).

By using these robust motion-estimation approaches, we can
perform motion compensation using the parameters already es-
timated. To keep the coherence among subbands, all the motion
parameters involved are identical to all subbands. For clarity,
we provide a useful flowchart of the bulk-motion compensation
in this step in Fig. 12.

In step 2), standard Fourier-based pulse-compression meth-
ods are used to generate the coarse 2-D images of the target
for each subband group data. Since each image is associated
with a narrow bandwidth, the range resolution is relatively low.
However, the high resolution in cross-range is achieved and
dominant scatters are resolved in many Doppler cells. Some
linear spectral estimation techniques [12] can be applied to
achieve superresolution in cross-range and preserve the mutual
coherence among subbands. The cross-range compression in
this step provides high SNR gain, which is useful to the
next step of HRRP synthesis for each Doppler cell in both
precision and efficiency. Another benefit from the cross-range
compression is the enhancement of the HRRPs’ sparsity for
each Doppler bin as the compression resolves scatters into
a set of Doppler cells, each of which contains only a few
scatters rather than all scatters of the target. Clearly, due to the
sparsity enhancement, the performance of the sparsity-driven
HRRP synthesizer is improved with relaxation on the amount
of measurements to generate a high-resolution ISAR image.

In step 3), the HRRP synthesis is performed to coherently
combine coarse images of the sparse subbands to yield a
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Fig. 12. Flowchart of the motion compensation for SFM ISAR imagery.

2-D image with 2-D high resolution. After azimuth compres-
sion in step 2), scattering centers of the target are distributed
over sets of Doppler cells. The sparsity together with SNR
is dramatically enhanced for each Doppler cell, which allows
us to coherently fuse sparse band data into the HRRPs even
when strong noise is present. The HRRP synthesis in this step
is performed to each of the Doppler bins. At first, the low-
resolution range profiles corresponding to a Doppler cell in
coarse images are extracted. The statistics of noise and range
profiles are estimated from the subband range profiles, and then,
the parameter λ can be calculated for each Doppler bin. Then,
the signals corresponding to the range bin are transformed
into range frequency domain, and the sparsity-driven HRRP
synthesizer is applied. Because of the motion compensation in
step 1), residual phase errors are small in quantity but may still
bring blurs and false scatters in the HRRP synthesis. Therefore,
the HRRP synthesis may take several iterations to overcome
the residual errors adaptively. The same process is performed
to every Doppler bin, and the high-resolution ISAR imagery
is generated. This process can be performed by parallelizing
over Doppler bins. Thus, the algorithm can take advantage
of multiple processors and special hardware and software for
FFTs and Hadamard multiplication in the implementation of
the approach, such as field-programmable gate array. Therefore,
the real-time implementation of the sparsity-driven imaging
approach is possible.

It should be noted in this step that, given a set of coarse
2-D ISAR images in hand, we can select noise samples directly

from them based on the assumption of even noise distribution.
Since the target support should take only a fraction of the
image plane, the noise bins are very abundant in the coarse
images. Clearly, the application of the energy-based threshold
in (23) and the wide-band CFAR detection in (25) to 2-D data
is straightforward. For clarity, a detailed procedure for this step
is shown in Fig. 13.

B. Performance Analysis With Both Simulated and
Measured Data

In this section, both simulated and real experimental data
are used for taking a performance analysis of the ISAR image
with sparse SFWs. The performance analysis is carried out by
considering two factors: the tolerance of noise and the reliance
on waveform. First, we use the simulated data. The data are
generated with the radar parameters listed in Table I and a
scattering model of the Yak-42 plane. A total of 128 bursts are
produced, and each burst consists of 16 sub-pulses for a full-
band SFW. The scattering point model of target is shown in
Fig. 14. To analyze the imaging performance of dependence on
waveform, the three types of sparse SFWs in the experiments
in Section III are used to generate measurements of sparse
frequency bands. The complex noise with Gaussian distribution
is added into simulated echoes to obtain different SNRs (20, 10,
and 5 dB). The radial velocity and acceleration of plane are set
as −100 m/s and −5 m/s2, respectively. The low-range profiles
are shown in Fig. 15, where the range migration is obvious due
to the radial motion.
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Fig. 13. HRRP synthesis and high-resolution image generation.

Fig. 14. Scattering model of Yak-42 plane.

With different SNRs, three sparse SFWs shown in Fig. 5 are
tested. The experiment flow follows the three steps of ISAR
imaging. The radial motion estimations are given in Table VII,
which are accurate at the predetermined SNR cases. In the case
of SNR = 5 dB, after coarse velocity compensation, the resid-
ual velocity brings Doppler ambiguity. Ambiguity should be
resolved from the Doppler centroids of several subband images.
In our experiment, the proposed ambiguity-resolving approach
is employed to sustain an estimation error of Doppler centroids
present in the case of SNR = 5 dB. The reconstructed high-
resolution ISAR images are shown in Fig. 16. In the HRRP
synthesis, λ is calculated adaptively according to the statistical
parameters estimation, and the iteration of HRRP synthesis

Fig. 15. Simulated range profiles.

TABLE VII
RADIAL MOTION ESTIMATION

is terminated when |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤ 0.001. In
Fig. 16, the first row represents experimental results of SSFW1
with different SNRs. The second and third rows in Fig. 16 show
the results of SSFW2 and SSFW3 corresponding to different
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Fig. 16. Results with the proposal sparse SFWs under different SNRs.

Fig. 17. Results with zero-padding FFT of sparse SFWs under different SNRs.

SNRs, respectively. Imaging results are optimal even in the case
of SSFW3 and SNR = 5. Owing to the coherent integrant of
cross-range compression and precise motion estimation, both
quality and efficiency of the HRRP synthesis with sparse SFWs
are enhanced. These results match the proposed ISAR imaging
framework with sparse SFWs. By comparing results with dif-
ferent sparse SFWs, we conclude that the denser the waveform
is, the more scattering centers can be extracted. Sparse SFM

waveform is a special kind of thinned waveforms [11], but its
frequency properties are different from that of random thinned
waveforms. Its subbands have identical bandwidths, and the
vacant frequency band between adjacent subbands is usually
wide. Sparse SF waveforms provide flexibility and convenience
in radar system design. By applying sparse SF waveforms,
we can furnish some active narrow bandwidth radars with
imaging capability by nominal adjustment in signal generation.
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Fig. 18. Results with S-CLEAN sparse SFWs under different SNRs.

Fig. 19. Photo of the observed ship.

TABLE VIII
EXPERIMENTAL RADAR PARAMETERS

However, the system response of sparse SF waveforms is with
not only high sidelobes but also high grating lobes. Therefore,
the images generated by IFFT are blurred and along with a
lot of false points and their resolutions are low, as shown
in Fig. 17. As a result, images obtained by IFFT might be
useless for further applications, such as target recognition. In
IFFT imaging, the vacant frequency bands are zero padded, and
then, IFFT is applied to the signal in frequency domain. Aside
from the sparsity-driven approach, some novel methods are also
capable of overcoming high sidelobes of system response. The

Fig. 20. Range profiles of the ship.

TABLE IX
ESTIMATION OF SHIP RADIAL MOTION

S-CLEAN algorithm [47] was proposed to deal with thinned
frequency waveforms in [11]. It is an iterative deconvolution
algorithm capable of resolving close targets even in the case
that the system response is heavily affected by high sidelobes.
S-CLEAN algorithm performs well in imaging with random
thinned waveforms [11]. In addition, it should be emphasized
that S-CLEAN algorithm requires precise motion compensa-
tion. For comparison, we also use the S-CLEAN algorithm to
the data sets of the sparse SF waveforms. In terms of consis-
tency, S-CLEAN is applied in HRRP synthesis, replacing our
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Fig. 21. Results with the proposal of sparse SFWs under different SNRs with real data.

method after the same motion compensation. The results from
S-CLEAN are shown in Fig. 18, whose arrangement is iden-
tical to that in Fig. 16. Clearly, similar to our sparsity-driven
approach, S-CLEAN overcomes sidelobes and grating lobes
effectively. Comparing Fig. 18 with Fig. 16, one can find that
edge of the target in S-CLEAN images is not as distinctive as in
sparsity-driven images, along with some scatter losses. It is in-
dicated that, in dealing with sparse SF waveform signal, our ap-
proach provides image with higher contrast and precision than
those of S-CLEAN at the price of larger computational load.

Here, we provide experimental results with real measured
ISAR data with a full-band SFW from a ship in the sea. The
ship photograph is shown in Fig. 19. The parameters of the
experimental SF radar are listed in Table VIII. In real situations,
the radar is located at an elevation of about 100 m above
sea level. The relative aspect angle between the radar light of
slight and ship track is about 45◦. During the observing time,
the radar transmits 32 SFM subpulses as a burst, providing a
range resolution of 0.234 m. In the experiments, 128 bursts are
used, and the range profiles are shown in Fig. 20. We extract
portions of subpulses to form echoes from sparse SFWs. The
three sparse waveforms are assumed: extracting one-fourth of
the subpulses out from the full-band SFW evenly and the rest
gives SSFW1, every second subpulse pours to SSFW2, and
every fourth subpulse goes to form SFW3. Their geometries
are similar to those shown in Fig. 5, but their amounts of
subpulses are 24, 16, and 8, respectively. The experimental
data have high SNRs up to 20 dB approximately. To perform
a quality analysis under different SNR conditions, we add
complex Gaussian noise into the echoes to generate measure-
ments with different SNRs (20, 10, and 5 dB). The motion

of the ship is estimated and listed in Table IX. The imaging
results with different sparse SFWs and SNRs are shown in
Fig. 21. The λ for the HRRP synthesis is calculated from the
adaptive statistical estimation, and the iteration is terminated
when |θ̂(g + 1)− θ̂(g)|2/|θ̂(g)|2 ≤ 0.001. In Fig. 21, the first
row represents imaging results of SSFW1 with different SNRs.
The second and third rows present imaging results of SSFW2
and SSFW3 corresponding to different SNRs, respectively. Our
imaging framework with sparse SFWs provides good imaging
quality, even in the case of significant frequency bands missing
and in the presence of strong noise. In terms of comparison,
we also provide image results with IFFT and the S-CLEAN
algorithm in Figs. 22 and 23, respectively. Although we can
still find that significant improvement is achieved by S-CLEAN
over the IFFT imaging, some degradations are still present in
S-CLEAN images by comparing them with those generated
by the sparsity-driven method. The images generated by the
sparsity-driven method are usually constructed in a denser and
cleaner way than those from S-CLEAN at the expense of
computation complexity. In sparsity-driven images, the edge of
the ship is distinctive to represent the shape and geometry of the
target. Then, we believe the sparsity-driven approach for high-
resolution ISAR imaging with sparse SF waveforms is deemed
useful in real applications, particularly when it is parallelized by
taking the advantage of some multiple processors in real-time
implementation.

V. CONCLUSION

SSFWs have more superiorities than conventional SFWs,
such as shorter data acquisition interval, smaller data amount,
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Fig. 22. Results with zero-padding FFT of sparse SFWs under different SNRs with real data.

Fig. 23. Results with S-CLEAN of sparse SFWs under different SNRs with real data.

and better antijamming capability. However, the high-resolution
ISAR imaging with sparse SFWs encounters difficulties caused
by missing data. In this paper, we have proposed a novel
framework for high-resolution ISAR imaging with SSFWs by
exploiting the spatial sparsity of ISAR signal. In the framework,
motion estimation has three steps and provides accurate estima-

tion under low SNRs. The imaging flow is modified to enhance
signal sparsity and SNR before the HRRP synthesis. One
may achieve the high-quality resolution imagery by using our
method robustly, even if the limited frequency measurements
are affected by strong noise. We believe that its robustness
makes it useful to suppress the noise and light requirement of
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waveforms in real applications of radar imaging. Further works
to improve the efficiency and real-time implementation of the
sparsity method are underway.
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