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ABSTRACT

In this paper, we analyze the resolution of bistatic synthetic aperture radar (BISAR) imaging for stationary ob-
jects. In particular, we analyze the resolution of images reconstructed by the method of a filtered backprojection
inversion, an inversion method which is derived from a scalar wave equation model. In this context we are able
to account for the effects of antenna beam patterns and arbitrary flight trajectories. The analysis is done by
examining the data collection manifold for different experiment geometries and system parameters.

Keywords: SAR, Imaging, BISAR, image formation, backprojection

1. INTRODUCTION

In synthetic aperture radar (SAR) imaging, radar antennas are mounted on an airborne platform. The scene
to be imaged is illuminated by electromagnetic waves transmitted from an antenna. The goal is to reconstruct
an image of the scene from the measurements taken of the scattered waves. In general, the resolution of the
image is better for larger bandwidths and longer flight trajectories. In addition, the resolution is affected by
the beam patterns of both the antenna transmitting the waves and the antenna measuring the scattered waves.
For a given experiment we refer to the flight trajectory, transmit and receive beam patterns as the experiment
geometry, and we refer to the carrier frequency and bandwidth as the system parameters. In this paper, we
explicitly relate the experiment geometry and system parameters to image resolution in the context of the model
and inversion method described in Ref. 1–3. Though in some respects the limits of SAR image resolution are well
known,4, 5 we believe this treatment best relates image resolution to experiment geometry and system parameters
together. Our analysis is similar to the idea of Fourier space coverage of the Fourier diffraction theorem,6 but
also incorporates antenna beam patterns.

We study images formed by a filtered backprojection inversion. The backprojection operator used is an
approximate inverse operator for the system model, with a few caveats when applied. First, the system model
and the equation for the measured data are derived from a scalar wave-equation model, which is itself derived
from Maxwell’s equations for electromagnetism. However, the model does not incorporate all predicted behavior
of electromagnetic waves. In particular, since it is a scalar model it does not describe the vector nature of
electromagnetic waves and therefore doesn’t incorporate the effects of polarization. Even so, the equation for the
measured data is consistent with the most commonly used models for SAR imaging. Second, the model makes
a single scattering assumption, known as the Born-approximation, which has the effect of linearizing the model.
This linearization is what makes an inversion possible. Again the use of the Born-approximation is consistent
with most SAR imaging models. Also, in order to perform the inversion we must make the assumption that the
only sources of electromagnetic radiation are from the transmitter. In practice, the ubiquitous presence of noise
in the measured data will always make an exact inversion impossible. However, statistical methods applied to
the same model can be used to form images that suppress the effects of noise and also clutter.7 Finally, we make
the assumption that the target reflects equally from all perspectives.

This paper is organized as follows. In Section 2 we introduce the model under which we perform our analysis.
In Section 3 we present the point spread function, which is the main subject of our analysis. Finally, in Section 4
we examine the resolution achieved for different experiment geometries and system parameters.
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2. MODEL

For our purposes we consider Monostatic SAR to be a special case of Bistatic SAR. We call the antenna il-
luminating the scene the transmitting antenna, and we call the antenna recording measurements the receiving
antenna. We begin by describing the forward model. Following Ref. 1–3, this model is derived from a scalar wave
model where the location of scatterers causes disruptions in the speed of propagating waves. The reflectivity
function is

V (x) =
1

c20
− 1

c(x)2

where c(x) is the wave speed at position x and c0 denotes the speed of light in a vacuum. The location of
scatterers in the target scene correspond to the location of singularities in V . The goal is to reconstruct V from
the measurements of the scattered waves.

The time-varying data d measured by the receiving antenna at a position parameterized by s is modeled as

d(s, t) = F{V }(s, t) =
∫ ∫

e−2πif(t−R(s,x)/c0)A(s,x, f)V (x) df dx (1)

where

A(s,x, f) =
P (f)JT (s,x, f)JR(s,x, f)

4π|ΓT (s)− x| |ΓR(s)− x| , (2)

ΓT (s), ΓR(s) denote the positions of the transmitting and receiving antenna respectively, P (f) denotes the
Fourier transform of the transmitted signal, and JT (s,x, f), JR(s,x, f) denote the transmitting and receiving
antenna beam patterns respectively. Also, R(s,x) = |ΓT (s) − x| + |ΓR(s) − x|. We assume the transmitting
antenna transmits band-limited signals.

With the additional assumption that the antennas are broadband and an appropriate symbol estimate of A,
F is a Fourier integral operator.8, 9 With this assumption, we can construct an approximate inverse operator,
which we denote B.

The reconstucted image Ṽ is formed by applying the inverse operator B to the data d where B is of the form

Ṽ (z) = B{d}(z) =
∫ ∫

e2πif(t−R(s,x)/c0Q(s, z, f)d(s, t) df ds dt. (3)

With an appropriate choice for Q, it has been shown that singularities in the reflectivity function V appear
correctly in the reconstructed image.10 In this paper, we only evaluate the backprojection operator with a choice
for Q that seeks to invert the forward operator. However, one can choose Q to suppress the effects of noise and
undesirable targets, known as clutter.7

3. POINT SPREAD FUNCTION

We can rewrite (3) using (1) as

Ṽ (z) =

∫
L(z,x)V (x) dx. (4)

where

L(z,x) =

∫
e2πif(R(s,x)+R(s,z))/c0A(s,x, f)Q(s, z, f) df ds (5)

Two point scatterers at positions x0,x1 are represented by the reflectivity function

V (x) = δ(x− x0) + δ(x− x1).

Substituting into (3), we find that the resulting image is

Ṽ (z) = L(z,x0) + L(z,x1).
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These scatterers will be resolved independently if the support of L(z,x0) and L(z,x1) do not overlap. The more
localized the support of L(z,x), the more accurately it represents point scatters in the scene and the better we
will be able to identify fine details in the target scene. It defines the fidelity with which the scheme will produce
an image of the target scene. Thus, we call L(z,x) the point spread function (PSF) of the imaging scheme. If

L(z,x) = δ(z − x) =

∫
R2

e2πi(z−x)·ξ dξ,

then the reconstructed image is exactly the reflectivity function.

Using the fundamental theorem of calculus we can write the phase of (5) as

2πf (R(s,x) +R(s, z)) /c0 =
2πf

c0

∫ 1

0

d

dμ
R(s,x+ μ(z − x)) dμ

= 2π(z − x) · Ξ(s,x, z, f) (6)

where

Ξ(s,x, z, f) =
f

c0

∫ 1

0

∇R(s, z + μ(x− z)) dμ (7)

≈ f

c0
P{ ̂(ΓT (s)− x) + ̂(ΓR(s)− z)}. (8)

Here the operator P projects a vector onto its first two components. Choosing Q as in Ref. 3 and letting
ξ = Ξ(s,x, z, f), the PSF may be rewritten as

L(z,x) =

∫
Ω

e2πi(z−x)·ξ dξ. (9)

with
Ω = {ξ = Ξ(s, z, z, f) : A(s, z, f) �= 0}. (10)

We call Ω the data collection manifold. These equations completely define the resolution of the system, which is
the width of the support of L(z,x).

Note that since (1) incorporates antenna beam patterns and geometric spreading, our choice for Q necessarily
includes terms that account for these. In practice most inversion schemes don’t account for antenna beam patterns
and some don’t account for geometric spreading. In that case we may analyze the PSF written as (5) with an
alternate Q that doesn’t account for the neglected factors.

4. EXAMPLES

4.1 Monostatic Stripmap SAR with Linear Flight Trajectory

The simplest SAR system is that with a single antenna acting as both transmitter and receiver, and undergoing
a linear flight trajectory. Near the origin we describe the resolution in terms of the support of the function
L(z, 0). In this case the data collection manifold is a segment of an annulus, as shown in Figure 1. From (8) the
width of the annulus is 2β/c0, where β is the bandwidth of the transmitted signal. The center of the annulus
is 2fc/c0 where fc is the center frequency of the transmitted signal. For strip-map SAR we approximate the
segment as a rectangle. If the flight trajectory is ΓT (s) = ΓR(s) = (s+ α, 0, h), then the height of the segment
is determined by the values of s for which the origin is illuminated by the antenna, that is the values of s for
which A(s, 0, f) �= 0. If Dy is the beam-footprint on the ground in the direction of the flightpath, then the origin
is illuminated when s ∈ (−Dy, Dy). Then as illustrated in Figure 1 we have

Dy

α
=

h/2

2fc/c0
.
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Figure 1: Data Collection Manifold for Monstatic Stripmap SAR
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(a) 3-D view of PSF
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(b) Aziumth resolution
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(c) Range resolution

Figure 2: Point Spread Function of Monostatic Stripmap SAR

Which gives the height of the data collection manifold as hΩ =
4Dyfc
αc0

.

The point spread function L(z, 0) is a 2-D Fourier transform of the shifted rectangular window

χ(ξ) =

{
1 if ξ ∈ Ω

0 otherwise
(11)

where in this case

Ω =

{
ξ = (ξ1, ξ2) : fc − β

2
< ξ1 < fc +

β

2
, |ξ2| < |2Dyfc

αc0

}
|.

The width of this rectangular window is only dependent on the beamwidth, while the height is dependent
on the beam-footprint. The resulting PSF is a product of sinc functions with the same property. Thus, we get
the familiar result that the resolution in the direction of the flightpath, the azimuthal resolution, is dependent
on the beam-footprint of the transmitting antenna, while the resolution in the direction perpendicular to the
flightpath, the range resolution, is dependent only on the bandwidth of the system.

4.2 Circular Spotlight SAR

In general, imaging resolution improves for longer flight trajectories and larger bandwidths. However, since the
bandwidth of any system is always finite, there is a limit to imaging resolution. This limit may be ascertained
by examination of (10), the data collection manifold. We see that the all points in the data collection manifold
must lie in the circle |ξ| < 2fmax/c0, where fmax is the maximum frequency of the transmitted signal.

For monostatic SAR we see that the data collection manifold will always be segments of an annulus, with the
maximum possible coverage being a full annulus of width 2β/c0. This occurs when the flight trajectory is a fill
circle and the beam is fixed on the target area. This is known as Circular Spotlight SAR (CSAR). An example
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of the data collection manifold for L(z, 0) under these conditions is shown in Figure 3. In this case we may we
may think of L(z, 0) as a 2-D Fourier transform of a difference of cylinder functions

L(z, 0) = F{C1 − C2}(z) (12)

C1(ξ) =

{
1 if |ξ| < 2fmax/c0

0 otherwise

C2(ξ) =

{
1 if |ξ| < 2fmin/c0

0 otherwise.

In this case we find that the PSF, L(z, 0), is a difference of sombrero functions, that is

L(z, 0) =
4π

|z|c0

(
fmaxJ1

(
2|z|fmax

c0

)
− fminJ1

(
2|z|fmin

c0

))
, (13)

where Jn is a Bessel function of the first kind. A cross section of this function is shown in Figure 4a.

In the bistatic case, where both the transmitter and receiver are traversing the same circular path, a single
pass results in a data collection manifold that is an annulus of the same width as in the monostatic case.
However, the outermost portion of the annulus for the bistatic case will be within the outermost portion of
the annulus for the monostatic case. For example for a flight trajectory ΓT (s) = (R cos s,R sin s, h), ΓR(s) =
(R cos s+ϑ,R sin s+ϑ, h) the annulus will only contain points such that |ξ| < √

2fmax/c0 when ϑ = 90. We call
the angle ϑ the bistatic angle. This suggests that for a single pass, image resolution formed from a bistatic setup
will be no better than for a monostatic setup. However, by taking multiple passes it is theoretically possible to fill
in the empty space in the data collection manifold. This is illustrated in Figure 3, where the outermost annulus
represents the data collected for a monostatic CSAR, while the inner annulus represents the data collected for a
bistatic setup with a bistatic angle ϑ = 30◦. Taking more measurements with larger bistatic angles will “fill in”
the empty spaces of the data collection manifold.

Such a data collection manifold results in a point spread function given by (13) when fmin = 0. This is
shown in Figure 4b. Note that compared to Figure 4a, the side lobes for this best possible case are much less
prominent. If we define resolution to be the width of the main lobe, then given that the first zero of the Bessel
function J1(x) occurs when x ≈ 4, we find that the maximum resolution is

R ≈ 2c0/f = 2λ (14)

where λ is the wavelength.

Here we note our assumption that the target reflects equally from all perspectives. In practice the Radar Cross
Section (RCS) of a target is dependent on the incident angle of the radar beam, that is the reflectivity function
is dependent on the orientation of the target with respect to the transmitter.11 Furthermore, the reflected angle,
the angle at which the reflected signal leaves the target, is affected by the incident angle. These effects combine
such that the reflected signal from the different components of a target are visible only for particular bistatic
angles.12 Thus, it is unlikely for any reconstructed image to approach the maximum resolution.

5. CONCLUSION

In this paper we’ve analyzed imaging resolution by examining an backprojection operator inversion formula. In
particular we’ve shown that this reproduces previous results for monostatic stripmap SAR. We’ve also shown
how this analysis can lead to better imaging resolution.
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