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Abstract
In this letter, we propose a (2+1)-dimensional generalized Camassa-Holm (2dgCH) hierarchy
with both quadratic and cubic nonlinearity. The Lax representation and peakon solutions for the
2dgCH system are derived.
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1. Introduction

In recent years, the Camassa–Holm (CH) equation [1]

α− + + = = −m u mu m u m u u2 0, , (1)t x x x xx

has attracted a great deal of attention in the theory of
integrable systems and solitons. This equation was derived as
a model for the propagation of shallow water waves over a
flat bed [1, 11]. In the literature, this equation was implied in
the paper of Fuchssteiner and Fokas on hereditary symmetries
as a very special case [2]. Since the work of Camassa and
Holm [1], various remarkable studies on this equation have
been developed [6–14]. The most remarkable feature of the
CH equation (1) is that it admits peaked soliton (peakon)
solutions in the case of α = 0 [1, 3]. A peakon is a weak
solution in some Sobolev space with a corner at its crest. The
stability and interaction of peakons were discussed in several
references [9–14].

In addition to the CH equation being an integrable
model with peakon solutions, other integrable peakon
models have been found, including the Degasperis–Procesi
(DP) equation [15] whose Lax pair, bi-Hamiltonian for-
mulation and peakon solutions were discovered in [16, 17],
the cubic nonlinear peakon equations [6, 18–20], and a
generalized CH equation (gCH) with both quadratic and

cubic nonlinearity [4, 5, 21]
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where k1 and k2 are two arbitrary constants. Through some
appropriate rescaling, equation (2) could be transformed to
the one in the papers of Fokas and Fuchssteiner [4, 5],
where it was derived from the motion of a two-dimensional,
inviscid, incompressible fluid over a flat bottom. In [21], the
Lax pair, bi-Hamiltonian structure, peakons, weak kinks,
kink-peakon interactional and smooth soliton solutions of
equation (2) are presented.

It is an interesting task to study the (2+1)-dimensional
generalizations of the peakon equations. For example, in
[22, 23] the authors provided a (2+1)-dimensional extension
of the CH hierarchy, and they further studied the
hodograph transformations and peakon solutions for their (2
+1)-dimensional CH equation. In this paper, we generalize the
gCH equation (2) to the whole integrable hierarchies in (1+1)
and (2+1)-dimensions. We show that the gCH hierarchies
admit Lax representations and construct a relation between
the gCH hierarchies in (1+1) and (2+1)-dimensions. More-
over, we derive the single-peakon solution and the multi-
peakon dynamic system for the (2+1)-dimensional gCH
equation.
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This paper is organized as follows. In section 2, we
review the CH hierarchies in (1+1) and (2+1)-dimensions. In
section 3, we present the gCH hierarchies in (1+1) and (2+1)-
dimensions. In particular, we give their Lax representations.
In section 4, we derive the peakon solutions to the (2+1)-
dimensional gCH equation. Conclusions are drawn in
section 5.

2. Overviews

In this section, we review the (1+1) and (2+1)-dimensional
CH hierarchies presented in [8, 22, 23]. The new results we
find are a relation between the CH hierarchies in (1+1) and (2
+1)-dimensions and isospectral Lax representations for the
CH hierarchies.

2.1. The CH hierarchies in (1+1) and (2+1)-dimensions

Let us consider the Lenard operators pair [1]

= ∂ + ∂ = ∂ − ∂( )J m m K,
1

2
. (3)x x x x

3

The Lenard gradients −b k are defined recursively by

= = ∈− − +
+Kb Jb Kb k, 0, . (4)k k 1 0

Taking an initial value = −b0
1

2
, one may generate the

negative CH hierarchy [8]
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For n = 1, (5) becomes
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which is nothing but the CH equation (1) with α = 0 [1]. For
n = 2, we arrive at
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In what follows, we call equation (7) the 2nd CH equation.
For the general n, we refer to (5) as the nth CH equation.

In [22, 23], the authors proposed a (2+1)-dimensional
CH equation
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In general, a (2+1)-dimensional generalization of the CH
hierarchy could be written as [22, 23]
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In [22, 23], the authors also studied the
hodograph transformations and the peakon solutions of the (2
+1)-dimensional CH equation.

2.2. Lax representation

Let
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λ is the eigenparameter and bj is defined through equation (4).
By a direct calculation, we obtain the following result.

Proposition 1. The nth CH equation (5) admits the Lax
representation

⎡⎣ ⎤⎦− + =− −
−U V U V, 0, (12)t x

n n( ) ( )
n

where the Lax pair U and −V n( ) given by (10).

As n = 1, we recover the Lax pair of the well-known CH
equation (1) with α = 0 [1]
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As n = 2, we obtain the Lax pair of the 2nd CH
equation (7)
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It has been known that there exist some relations between
integrable models in (1+1)-dimensions and ones in (2+1)-
dimensions. For example, assembly of the first two 1+1
dimensional non-trivial members in the AKNS hierarchy: the
coupled nonlinear Schrödinger equation and the coupled
mKdV equation, yields the well-known (2+1)-dimensional
KP equation [24–27]. The compatible solution of the first two
members in the KdV hierarchy produces a special solution of
the (2+1)-dimensional Sawada–Kotera equation [28–30]. In
this paper, we have some similar results listed as follows.

Proposition 2. Let =−t y1 , =−t t2 . Let m x y t( , , ) be a
compatible solution of the CH equation (6) and the 2nd CH
equation (7). Then m x y t( , , ) provides a special solution to
the (2+1)-dimensional CH equation (8). In general, if

− −m x t t( , , )n1 is a compatible solution of the CH equation (6)
and the nth CH equation (5), then the (2+1)-dimensional CH
hierarchy (9) has a special solution − −m x t t( , , )n1 .

Remark 1. Based on proposition 2, we may construct the
algebraic-geometric solution of the (2+1)-dimensional CH
hierarchy with the method developed in [8, 27, 28]. We will
consider this topic in another publication.

3. The gCH hierarchies in (1+1)- and (2+1)-
dimensions

Let us first introduce a pair of Lenard operators [21]
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and define the Lenard gradients −b k recursively by

= = ∈− − +
+Kb Jb Kb k, 0, . (16)k k 1 0

We define a gCH hierarchy in (1+1)-dimension as follows
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which is nothing but the gCH equation (2). For n = 2,
equation (17) is cast into the 2nd gCH equation in the gCH
hierarchy (17)
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For the general case ⩾n 2, we refer to (17) as the nth gCH
equation.

Similar to the (2+1)-dimensional generalization of the
CH equation, we extend the (1+1)-dimensional gCH
equation (2) to the (2+1)-dimensional system as follows:
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Furthermore, we may define the (2+1)-dimensional gCH
hierarchy in the following form:
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In particular, as =k 01 and =k 22 , our (2+1)-dimensional
gCH hierarchy (21) is reduced to the (2+1)-dimensional CH
hierarchy (9).
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Let us now show that the gCH hierarchies admit Lax
representations. Let
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Direct calculations lead to the following proposition.

Proposition 3. The gCH hierarchy (17) possesses the Lax
representation
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−U V U V, 0,t x
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with the Lax pair U and −V n( ) given by (22).

In particular, the Lax pair of the gCH equation (18) is
given by
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The Lax pair of the 2nd gCH equation (19) is given by
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where −Ṽ ( 1) and −Ṽ ( 2) are defined by (23) and (24).
One may easily check the following results.

Proposition 4. Let =−t y1 , =−t t2 . Let m x y t( , , ) be a
compatible solution of the gCH equation (18) and the 2nd

gCH equation (19). Then m x y t( , , ) provides a special
solution to (2+1)-dimensional gCH equation (20). In general,
if − −m x t t( , , )n1 is a compatible solution of the gCH
equation (18) and the nth gCH equation (17), then the (2
+1)-dimensional gCH hierarchy (21) has a special solution

− −m x t t( , , )n1 .

4. Peakon solutions to the 2dgCH equation (20)

Assume that the single-peakon solution of the (2+1)-dimen-
sional gCH equation (20) is given in the form of
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Substituting (28) into (20) and integrating against the
test function with support around the peak, we finally
arrive at
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where c is an arbitrary constant and F is an arbitrary smooth
function. Thus, the single-peakon solution of equation (20)
is given by
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As =k 01 , =k 22 , we recover the single-peakon solution of
the (2+1)-dimensional CH equation proposed in [22].

In particular, if we take + +F y k c k c t( ( ) )1
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See figure 1 for the graph of the single-peakon solution

−b x y t( , , )2 at t = 0. If we take + +F y k c k c t( ( ) )1
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2
, then the single-peakon solution (31)
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becomes
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See figure 2 for the graph of −b x y t( , , )2 in (33) at t = 0.

In general, let us suppose that the N-peakon has the
following form
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=
( )

b p y t e

m r y t x q y t

( , ) ,

2 ( , ) ( , ) . (34)

j

N

j
x q y t

j

N

j j

2

1

( , )

1

j

Similar to the cases of one-peakon but with a lengthy cal-
culation, we are able to obtain the following N-peakon
dynamical system

∑

∑

∑

=

= − −

= −

= −

+ − − −

×

=

− −

=

− −

=

− − − −

( )

( )

( ) ( )

r

r k r p sgn q q e

p r q

q k r p k p e

k r p sgn q q sgn q q

e

0,

1

2
,

,

1

6

1

2

1

2
1

. (35)

j y

j t j

k

N

k j k
q q

j j j y

j t j j
k

N

k
q q

i k

N

i k j i j k

q q q q

,

, 2

1

,

, 1 2

1

1

, 1

j k

j k

j i j k

5. Conclusion

In this paper, we have extended the gCH equation to the
hierarchies in (1+1)-dimensions and (2+1)-dimensions. We
first show the gCH hierarchies admit Lax representation. Then
we show that the (2+1)-dimensional gCH equation possesses
a single peakon solution as well as multi-peakon solutions.
Other topics, such as smooth soliton solutions, cuspons,
peakon stability, and algebra-geometric solutions, remain to
be developed.
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Figure 2. Single-peakon solution −b x y t( , , )2 in (33) with = −c 1
at t = 0.

Figure 1. Single-peakon solution −b x y t( , , )2 in (32) with = −c 1
at t = 0.
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