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In this Letter, we study the solutions of equation mt = mxu, m = u − uxx, which actually comes from
the so-called b-family equation mt = mxu + bmux , m = u − uxx in the case of b = 0. We show that this
equation admits both N-peakon and N-kink solutions. In particular, the bell-shape soliton, hat-shape
soliton, single-kink, and two-kink solutions are presented in an explicit formula.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In [1,2], the authors proposed the following so-called b-family
equation

mt = mxu + bmux, m = u − uxx, (1)

where b is an arbitrary constant. There are some distinguished spe-
cial cases of this equation. For example, in the case of b = 2, this
equation is reduced to the well-known Camassa–Holm (CH) equa-
tion, which was derived by Camassa and Holm [3] as a shallow
water wave model [3]. The CH equation was found to be com-
pletely integrable with a Lax pair and associated bi-Hamiltonian
structure [3,4]. The most interesting feature of the CH equation is
that it admits peaked soliton (peakon) solutions [3,5]. A peakon is
a weak solution in some Sobolev space with corner at its crest.
The stability and interaction of peakons were discussed in sev-
eral references [6–11]. In the case of b = 3, Eq. (1) becomes the
Degasperis–Procesi (DP) equation, which is another important non-
linear model possessing peakon solutions [12–14]. The integrabil-
ity of the Degasperis–Procesi equation was shown by constructing
a Lax pair, and deriving two infinite sequences of conservation
laws [13].

Recently, we presented an integrable equation with both quad-
ratic and cubic nonlinearity [15]:
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where α, k1, and k2 are three arbitrary constants. In the case of
α = 0, we derived the N-peakon solution. In the case of α �= 0
and k2 = 0, we found that this equation allows single weak kink
and kink–peakon interactional solutions. However, different from
the N-peakon solutions in the form of linear superpositions of
the single-peakon, Eq. (2) does not admit the N-kink solution
in the form of the superpositions of single-kink. It is natural to
ask whether there exists a nonlinear model that may admit both
N-peakon and N-kink solutions.

In this Letter, we will show that Eq. (1) in the case of b = 0,
namely,

mt = mxu, m = u − uxx, (3)

possesses both N-peakon (N-peakon solutions were already pre-
sented in [1]) and N-kink solutions. In particular, the bell-shape
soliton, hat-shape soliton, stationary kink, and two-kink solutions
of Eq. (3) are presented in an explicit formula and plotted. Within
our knowledge, this is probably the first nonlinear model that al-
lows the N-peakon and N-kink solution at the same time.

2. The soliton and N-kink solutions of Eq. (3)

In [1,2], Holm, Staley, and Hone have deduced the N-peakon
solutions for the b-family Eq. (1)
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Fig. 1. The stationary single-kink solution u(x, t) given by (10) with c1 = 1 and
c = 0.

Fig. 2. The bell-shape solution u(x, t) determined by (13) with B1 = c1 = 1 at the
moment of t = 0.

u =
N∑

j=1

p j(t)e−|x−q j(t)|, (4)

where p j(t) and q j(t) evolve according to the dynamical system

q j,t =
N∑

k=1

pke−|q j−qk|,

p j,t = (b − 1)

N∑
k=1

p j pk sgn(q j − qk)e−|q j−qk|. (5)

The N-peakon dynamical system of Eq. (3) is just (5) with the case
of b = 0. See [1] for the details of the peakon solutions of b-family
Eq. (1).

Let us now derive the N-kink solution of Eq. (3). We suppose
the N-kink solution as the form
Fig. 3. The hat-shape solution u(x, t) determined by (13) with B1 = 20 and c1 = 1
at the moment of t = 0.

u =
N∑

j=1

c j sgn
(
x − q j(t)

)(
e−|x−q j(t)| − 1

)
, (6)

where c j are arbitrary constants and q j(t) are to be determined. It
is easy to check that

ux = −
N∑

j=1

c je
−|x−q j |, ut =

N∑
j=1

c jq j,te−|x−q j |. (7)

The second order and higher order partial derivatives of (6) do not
exist at x = q j(t). But in the distribution sense, we have

mx = −2
N∑

j=1

c jδ(x − q j), mt = 2
N∑

j=1

c jq j,tδ(x − q j). (8)

Substituting (6)–(8) into Eq. (3) and integrating against test func-
tion with compact support, we obtain that q j(t) evolve according
to the system

q j,t = −
N∑

i=1

ci sgn(q j − qi)
(
e−|q j−qi | − 1

)
, 1 � j � N. (9)

For N = 1, we have q1,t = 0, which yields q1 = c, where c is an
arbitrary constant. Thus the single-kink solution is stationary and
it reads

u = c1 sgn(x − c)
(
e−|x−c| − 1

)
. (10)

See Fig. 1 for the profile of this stationary kink solution.
For N = 2, (9) is reduced to

{
q1,t = −c2 sgn(q1 − q2)

(
e−|q1−q2| − 1

)
,

q2,t = c1 sgn(q1 − q2)
(
e−|q1−q2| − 1

)
.

(11)

If c1 + c2 = 0, we may obtain
{

q1(t) = c1 sgn(B1)
(
e−|B1| − 1

)
t,

q2(t) = q1(t) − B1,
(12)

where B1 is an arbitrary constant. The solution becomes
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Fig. 4. The two-kink solution (15) at the moment of t = 5.

u(x, t) = c1
[
sgn(x − q1)

(
e−|x−q1| − 1

)
− sgn(x − q2)

(
e−|x−q2| − 1

)]
, (13)

where q1 and q2 are given by (12). It is interesting that the above
solution demonstrates the solitary wave shape. Explicitly, if the
value |B1| is small, solution (13) presents the bell-shape. See Fig. 2
for this solution with B1 = 1. If the value |B1| is a little large, so-
lution (13) takes on the hat-shape. See Fig. 3 for this hat-shape
solution with B1 = 20.

If c1 + c2 �= 0, from (11) we obtain⎧⎪⎨
⎪⎩

q1(t) = c2

c1 + c2
ln

(
A1e(c1+c2)t + 1

)
,

q2(t) = −c1

c1 + c2
ln

(
A1e(c1+c2)t + 1

)
,

(14)
where A1 � 0 is a constant. In particular, for c1 = c2 = 1 and
A1 = 1, the solution becomes

u(x, t) = sgn

(
x − 1

2
ln

(
e2t + 1

))(
e−|x− 1

2 ln(e2t+1)| − 1
)

+ sgn

(
x + 1

2
ln

(
e2t + 1

))(
e−|x+ 1

2 ln(e2t+1)| − 1
)
, (15)

which is two-kink solution. See Fig. 4 for the profile of this two-
kink solution.
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