The N-kink, bell-shape and hat-shape solitary solutions of b-family equation in the case of $b=0$

Baoqiang Xia ${ }^{\mathrm{a}, *}$, Zhijun Qiao ${ }^{\text {b }}$
a School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78541, USA

A R T I C L E I N F O

Article history:

Received 20 May 2013
Received in revised form 27 June 2013
Accepted 10 July 2013
Available online 16 July 2013
Communicated by A.R. Bishop

Keywords:

b-Family equation
Peakon
Kink

Abstract

In this Letter, we study the solutions of equation $m_{t}=m_{x} u, m=u-u_{x x}$, which actually comes from the so-called b-family equation $m_{t}=m_{x} u+b m u_{x}, m=u-u_{x x}$ in the case of $b=0$. We show that this equation admits both N-peakon and N-kink solutions. In particular, the bell-shape soliton, hat-shape soliton, single-kink, and two-kink solutions are presented in an explicit formula.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In [1,2], the authors proposed the following so-called b-family equation

$$
\begin{equation*}
m_{t}=m_{x} u+b m u_{x}, \quad m=u-u_{x x}, \tag{1}
\end{equation*}
$$

where b is an arbitrary constant. There are some distinguished special cases of this equation. For example, in the case of $b=2$, this equation is reduced to the well-known Camassa-Holm (CH) equation, which was derived by Camassa and Holm [3] as a shallow water wave model [3]. The CH equation was found to be completely integrable with a Lax pair and associated bi-Hamiltonian structure [3,4]. The most interesting feature of the CH equation is that it admits peaked soliton (peakon) solutions [3,5]. A peakon is a weak solution in some Sobolev space with corner at its crest. The stability and interaction of peakons were discussed in several references [6-11]. In the case of $b=3$, Eq. (1) becomes the Degasperis-Procesi (DP) equation, which is another important nonlinear model possessing peakon solutions [12-14]. The integrability of the Degasperis-Procesi equation was shown by constructing a Lax pair, and deriving two infinite sequences of conservation laws [13].

Recently, we presented an integrable equation with both quadratic and cubic nonlinearity [15]:

[^0]\[

$$
\begin{align*}
m_{t} & =\alpha u_{x}+\frac{1}{2} k_{1}\left[m\left(u^{2}-u_{x}^{2}\right)\right]_{x}+\frac{1}{2} k_{2}\left(2 m u_{x}+m_{x} u\right) \\
m & =u-u_{x x} \tag{2}
\end{align*}
$$
\]

where α, k_{1}, and k_{2} are three arbitrary constants. In the case of $\alpha=0$, we derived the N-peakon solution. In the case of $\alpha \neq 0$ and $k_{2}=0$, we found that this equation allows single weak kink and kink-peakon interactional solutions. However, different from the N-peakon solutions in the form of linear superpositions of the single-peakon, Eq. (2) does not admit the N-kink solution in the form of the superpositions of single-kink. It is natural to ask whether there exists a nonlinear model that may admit both N-peakon and N-kink solutions.

In this Letter, we will show that Eq. (1) in the case of $b=0$, namely,
$m_{t}=m_{x} u, \quad m=u-u_{x x}$,
possesses both N-peakon (N-peakon solutions were already presented in [1]) and N-kink solutions. In particular, the bell-shape soliton, hat-shape soliton, stationary kink, and two-kink solutions of Eq. (3) are presented in an explicit formula and plotted. Within our knowledge, this is probably the first nonlinear model that allows the N-peakon and N-kink solution at the same time.

2. The soliton and N-kink solutions of Eq. (3)

In [1,2], Holm, Staley, and Hone have deduced the N-peakon solutions for the b-family Eq. (1)

Fig. 1. The stationary single-kink solution $u(x, t)$ given by (10) with $c_{1}=1$ and $c=0$.

Fig. 2. The bell-shape solution $u(x, t)$ determined by (13) with $B_{1}=c_{1}=1$ at the moment of $t=0$.
$u=\sum_{j=1}^{N} p_{j}(t) e^{-\left|x-q_{j}(t)\right|}$,
where $p_{j}(t)$ and $q_{j}(t)$ evolve according to the dynamical system
$q_{j, t}=\sum_{k=1}^{N} p_{k} e^{-\left|q_{j}-q_{k}\right|}$,
$p_{j, t}=(b-1) \sum_{k=1}^{N} p_{j} p_{k} \operatorname{sgn}\left(q_{j}-q_{k}\right) e^{-\left|q_{j}-q_{k}\right|}$.
The N-peakon dynamical system of Eq. (3) is just (5) with the case of $b=0$. See [1] for the details of the peakon solutions of b-family Eq. (1).

Let us now derive the N-kink solution of Eq. (3). We suppose the N-kink solution as the form

Fig. 3. The hat-shape solution $u(x, t)$ determined by (13) with $B_{1}=20$ and $c_{1}=1$ at the moment of $t=0$.
$u=\sum_{j=1}^{N} c_{j} \operatorname{sgn}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$,
where c_{j} are arbitrary constants and $q_{j}(t)$ are to be determined. It is easy to check that
$u_{x}=-\sum_{j=1}^{N} c_{j} e^{-\left|x-q_{j}\right|}, \quad u_{t}=\sum_{j=1}^{N} c_{j} q_{j, t} e^{-\left|x-q_{j}\right|}$.
The second order and higher order partial derivatives of (6) do not exist at $x=q_{j}(t)$. But in the distribution sense, we have
$m_{x}=-2 \sum_{j=1}^{N} c_{j} \delta\left(x-q_{j}\right), \quad m_{t}=2 \sum_{j=1}^{N} c_{j} q_{j, t} \delta\left(x-q_{j}\right)$.
Substituting (6)-(8) into Eq. (3) and integrating against test function with compact support, we obtain that $q_{j}(t)$ evolve according to the system
$q_{j, t}=-\sum_{i=1}^{N} c_{i} \operatorname{sgn}\left(q_{j}-q_{i}\right)\left(e^{-\left|q_{j}-q_{i}\right|}-1\right), \quad 1 \leqslant j \leqslant N$.
For $N=1$, we have $q_{1, t}=0$, which yields $q_{1}=c$, where c is an arbitrary constant. Thus the single-kink solution is stationary and it reads
$u=c_{1} \operatorname{sgn}(x-c)\left(e^{-|x-c|}-1\right)$.
See Fig. 1 for the profile of this stationary kink solution. For $N=2,(9)$ is reduced to
$\left\{\begin{array}{l}q_{1, t}=-c_{2} \operatorname{sgn}\left(q_{1}-q_{2}\right)\left(e^{-\left|q_{1}-q_{2}\right|}-1\right), \\ q_{2, t}=c_{1} \operatorname{sgn}\left(q_{1}-q_{2}\right)\left(e^{-\left|q_{1}-q_{2}\right|}-1\right) .\end{array}\right.$
If $c_{1}+c_{2}=0$, we may obtain
$\left\{\begin{array}{l}q_{1}(t)=c_{1} \operatorname{sgn}\left(B_{1}\right)\left(e^{-\left|B_{1}\right|}-1\right) t, \\ q_{2}(t)=q_{1}(t)-B_{1},\end{array}\right.$
where B_{1} is an arbitrary constant. The solution becomes

Fig. 4. The two-kink solution (15) at the moment of $t=5$.

$$
\begin{align*}
u(x, t)= & c_{1}\left[\operatorname{sgn}\left(x-q_{1}\right)\left(e^{-\left|x-q_{1}\right|}-1\right)\right. \\
& \left.-\operatorname{sgn}\left(x-q_{2}\right)\left(e^{-\left|x-q_{2}\right|}-1\right)\right] \tag{13}
\end{align*}
$$

where q_{1} and q_{2} are given by (12). It is interesting that the above solution demonstrates the solitary wave shape. Explicitly, if the value $\left|B_{1}\right|$ is small, solution (13) presents the bell-shape. See Fig. 2 for this solution with $B_{1}=1$. If the value $\left|B_{1}\right|$ is a little large, solution (13) takes on the hat-shape. See Fig. 3 for this hat-shape solution with $B_{1}=20$.

If $c_{1}+c_{2} \neq 0$, from (11) we obtain
$\left\{\begin{array}{l}q_{1}(t)=\frac{c_{2}}{c_{1}+c_{2}} \ln \left(A_{1} e^{\left(c_{1}+c_{2}\right) t}+1\right), \\ q_{2}(t)=\frac{-c_{1}}{c_{1}+c_{2}} \ln \left(A_{1} e^{\left(c_{1}+c_{2}\right) t}+1\right),\end{array}\right.$
where $A_{1} \geqslant 0$ is a constant. In particular, for $c_{1}=c_{2}=1$ and $A_{1}=1$, the solution becomes

$$
\begin{align*}
u(x, t)= & \operatorname{sgn}\left(x-\frac{1}{2} \ln \left(e^{2 t}+1\right)\right)\left(e^{-\left|x-\frac{1}{2} \ln \left(e^{2 t}+1\right)\right|}-1\right) \\
& +\operatorname{sgn}\left(x+\frac{1}{2} \ln \left(e^{2 t}+1\right)\right)\left(e^{-\left|x+\frac{1}{2} \ln \left(e^{2 t}+1\right)\right|}-1\right) \tag{15}
\end{align*}
$$

which is two-kink solution. See Fig. 4 for the profile of this twokink solution.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (grant numbers 11271168 and 11171295).

References

[1] D.D. Holm, M. Staley, SIAM J. Appl. Dyn. Syst. 2 (2003) 323.
[2] D.D. Holm, A.N.W. Hone, J. Nonlinear Math. Phys. 12 (2005) 380.
[3] R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661.
[4] P.J. Olver, P. Rosenau, Phys. Rev. E 53 (1996) 1900.
[5] R. Beals, D. Sattinger, J. Szmigielski, Inverse Problems 15 (1999) 1.
[6] A. Constantin, W.A. Strauss, Comm. Pure Appl. Math. 53 (2000) 603.
[7] A. Constantin, W.A. Strauss, J. Nonlinear Sci. 12 (2002) 415.
[8] R. Beals, D. Sattinger, J. Szmigielski, Adv. Math. 140 (1998) 190.
[9] R. Beals, D. Sattinger, J. Szmigielski, Adv. Math. 154 (2000) 229.
[10] M.S. Alber, R. Camassa, Y.N. Fedorov, D.D. Holm, J.E. Marsden, Commun. Math. Phys. 221 (2001) 197.
[11] R.S. Johnson, Proc. R. Soc. Lond. A 459 (2003) 1687.
[12] A. Degasperis, M. Procesi, in: A. Degasperis, G. Gaeta (Eds.), Asymptotic Integrability Symmetry and Perturbation Theory, World Scientific, Singapore, 1999, pp. 23-37.
[13] A. Degasperis, D.D. Holm, A.N.W. Hone, Theor. Math. Phys. 133 (2002) 1463.
[14] H. Lundmark, J. Szmigielski, Inverse Problems 19 (2003) 1241.
[15] Z.J. Qiao, B.Q. Xia, J.B. Li, arXiv:1205.2028v2.

[^0]: * Corresponding author. Fax: +8651683500005.

 E-mail addresses: xiabaoqiang@126.com (B. Xia), qiao@utpa.edu (Z. Qiao).

