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In this paper, we study an integrable generalization of the associated Camassa-Holm equation. The gener-
alized system is shown to be integrable in the sense of Lax pair and the bilinear Backlund transformations
are presented through the Bell polynomial technique. Meanwhile, its infinite conservation laws are con-
structed, and conserved densities and fluxes are given in explicit recursion formulas. Furthermore, a
Darboux transformation for the system is derived with the help of the gauge transformation between
two Lax pairs. As an application, soliton and periodic wave solutions are given through the Darboux

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Camassa-Holm (CH) equation

Ur 4 2k*Ux — Uxxt +3UUx = 2UxUxxx + UUxxx. (1.1)

where the real constant k > 0, was derived as a model for shallow
water waves by Camassa and Holm in 1993 [1]. This equation is
integrable with the following Lax pair:

1
Yxx = )L(U — Uxx +k2)1/f + Z‘/h

Yr = <21_)\ - u) Yx + %wa~
Considerable interest was paid on the CH equation in recent
decades about its integrability and various kind of exact solutions
[2-17]. Schiff and Fisher showed that the Camassa-Holm equation
possessed the Backlund transformations and an infinite number of
local conserved quantities by using the Loop group approach [5,
6]. Parker gave explicit multi-soliton solutions for the CH equation
by taking the Hirota bilinear method and a coordinate transfor-
mation [12]. Its structure and dynamics were investigated in the
different parameter regimes. According to the Ref. [12], there is
a reciprocal transformation, (T, X) — (t, x), such that

(1.2)
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dx=RdX —URdT, dt=dT, R=+U—Uxx+k2. (1.3)

Let us apply the reciprocal transformation to the Lax pair (1.2) and
define the following potential function u(x, t)

y_ 1Rw 1R 2+1 1

"2 R 4\R 4R?  4k2’
then Eq. (1.1) is transformed into the following associated Camassa-
Holm (ACH) equation

(1.4)

U + 2k3uy, + 4k%uu; +2k2ux8;1ut — KUy = 0. (1.5)

Hone showed in Ref. [18] how the ACH equation (1.5) is related to
Schrodinger operators and the KdV equation, and described how to
construct solutions of the ACH equation from tau-functions of the
KdV hierarchy, including rational, N-soliton, and elliptic solutions.

Recently, integrable negative order flows, mixed equations and
the relationship of different hierarchies attracted much attention,
including continuous and discrete cases, such as the negative KdV,
mixed KdV, and Volterra lattice equations [19-25]. Inspired by the
above works, let us consider a new generalization of the associated
Camassa-Holm equation, namely,

Ut + o (Uxex — 6ULy)

+ B(2K3uy + 4k%uue + 2kPuxdy "up — K uge) =0, (1.6)

where «, 8 are two arbitrary constants.

Apparently, Eq. (1.6) is reduced to the ACH equation (1.5) when
we take « =0, B =1. For « = 1,8 =0, Eq. (1.6) gives the KdV
equation. So, Eq. (1.6) may be called the ACH-KdV equation. In this
paper, we show that (1.6) is integrable in the sense of Lax pair. We
use the Bell polynomial [26] and Hirota’s bilinear methods [27]
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to provide the bilinear Bicklund transformation and infinite con-
servation laws [28-40]. Furthermore, we construct (1.6)’s Darboux
transformation through Lax pair, and apply it to obtain the exact
solutions of the ACH-KdV equation (1.6).

Our paper is organized as follows. In Section 2, by using Bell
polynomials, we study the bilinear Backlund transformations of the
ACH-KdV equation, and the Lax pair is also recovered. In Section 3,
infinite conservation laws of the ACH-KdV equation are derived by
virtue of the Lax equations. All conserved densities and fluxes are
recursively determined in an explicit formula. In Sections 4 and 5,
a Darboux transformation of the ACH-KdV equation is presented
through its Lax pair, and soliton and periodic wave solutions are
obtained through the Darboux transformation. Some conclusions
are given in the last section.

2. The bilinear Bicklund transformation

In this section, we focus on the bilinear Biacklund transforma-
tion of the ACH-KdV equation (1.6). Let

U= —(xx, (2.1)
then substituting (2.1) into Eq. (1.6), yields
Gax,t + o (gsx + 6G2xq3x)

+ B(2Kq3x — 4k*qaxGaxc — 2k2q3xGxc — K2Gaxc) =0,  (2.2)

where qrx;,...rex, = a;} e a;fQ-
Simultaneously, an auxiliary independent variable 7 is able to be
determined through the following equation

Qax + 305, = —Qx 7. (2.3)

Substituting (2.3) into Eq. (2.2), and integrating once with respect
to x, we obtain

E(@) = qx¢ + &[qax + 305

2 1
+ ,3|:2k3q2x - §I<2(q3x,t + 3q2xqx,¢) + §k2‘h,t:| =0.
(2.4)

Let g=2Ing and q' =2In f be two different solutions of the
above equation (2.4). The corresponding two-field condition is

E(q') — E(@)
= (¢' =), +[(a' —a)y, + 305 — 305,

, 1,5, 250
+/3[2k3(q — @)y + 30 —a), = SKAA )3y,

— 2K (qhy s — qzqu,t)]
—0. (2.5)

To find the bilinear Bicklund transformation of the ACH-KdV
equation (1.6), we define the following two variables

v:(q’—q)/2=ln£, w=(q'+q)/2=1In(fg). (2.6)

Then, inserting (2.6) into Egs. (2.3) and (2.5) yields

5 (E(@) - @)

1 2
= Vit + 0(Vay + 6Waxvay) + ﬁ[2k3\/zx + §k2Vr,t - §k2V3x,t

— 2K (Vax Wit + Vx,tWZX)] =0, (2.7)

and

Vx,r + Vax + 6voxwox =0. (2.8)
Let us impose a constraint equation

Wox + V2 =1, (2.9)

where A is a parameter. We substitute (2.9) into Eq. (2.8) and in-
tegrate in x to obtain

Ve =2V3 — v3x — 6AVy. (2.10)

Then, the two-field condition (2.7) becomes
3 2.2 1,
Vit + 0 (Vax + 6WaxVax) + B[ 2k vax — 2k Vv — 5" Vit

+ 6k?Avy — 2k2 (Vox Wyt + vx,th,()] =0, (2.11)

i.e.
[ ve + o (vax + 3viwax + v3) + 3advy + 2K vy
— Bk? (V2x,t + WoxVe + 2Wyx vy + V)Z(Vt) - 3ﬂk2)hvt] =0.
(212)
Based on the Bell polynomial theory, we have
R[Ve(v, w) + o (V3x(v, w) + 30x(v, w))
+ B Ve (v, W) — K2V (v, W) — 3k%A D (v, w)) ] =0,
(2.13)

where we have taken advantage of the following formula [26]:

ri+---+r¢ is odd, (2'14)

) Vrixaearexes
Frin.. rl’%_{ r1+---+rg is even.

Wrixy,...Texes
Integrating Eq. (2.13) with respect to x and setting the integral
constant equal to zero, we obtain the following coupled system
of Y (v, w) polynomials
Vox(Vv, w) = A,
Ve(v, w) 4 o (V3x(v, W) + 30D (v, w))

+ BRI (v, W) =KVt (v, w) = 3k2A Ve (v, w)) = 0.
(2.15)

By virtue of the identity between the (v, w) polynomials and the
bilinear operator

Virxa,omexe (V=Inf/g, w=1Infg) = (fg) ' D} ---
n+ny+---+ng 21,

Dy f-g
(2.16)
where D is the Hirota derivatives defined by
DyDof-g
= (3 = )™ By = )" S %1, 08 (%1 %) |y _yy 2o,

Thus we immediately obtain the following bilinear Backlund trans-
formation for the ACH-KdV equation (1.6):

[Di—2]f-g=0,
[(1—3k*AB)D; + o(D} + 31Dy) + B(2k*Dx — k*D2Dy)f - g
=0. (217)
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Using the Hopf-Cole transformation v =In¢ and formula

—1pnn n
(F&)" Dy Dy f-g ’g=EXP(q/2),f/g=<ﬂ

n n l .
_ (/)_1 Z Z e Z l_[ <::)Pr1X1 ..... nx (@)

r1+---+r=evenr; =0 rn=0i=1

X Qmny—r)x1,..., (ny—rpxps (21 8)
we may transform (2.17) into the following linear system,
Mo = @ox + qoxp = A,
N = (1= 3Bk*x — Bk*q2x) @t + 0 Pux — B> Ot

+ (3ot qax — 28K qx,c + 28K + 30t2) gy = 0, (2.19)

which is the Lax pair of Eq. (2.2) with Lax operators
M =35 + q2x,
N = (1 —3BKk*r — Bk*q2x) 3¢ + d; — Bk*07 0

+ (3aqax — 2Bk gy, + 2Bk + 30 ) dx. (2.20)

Combining with u = —qax, we have the Lax pair for the ACH-KdV
equation (1.6)
Pxx —UP =A@,
(1 — 3/3](2k —+ ﬂkzu)(pt + a(pxxx - ,Bkzgﬂxx,t

+ (=3au +28k*3; 'ue + 28k + 300 gx = 0. (2.21)
By a long calculation, it is not difficult to get that (1.6) is exactly
the compatibility condition of (2.21).
3. Conservation laws

This section is contributed to construct the infinite conservation
laws for Eq. (2.2). We introduce a new potential function 7n(x, t),
such that

dx — dx
=2 = 3.1
5 (3:1)
where q, q’ is the same as in (2.15), then we have
Vx=T1, Wy =1 +(x. (32)
Substituting (3.2) into (2.9) yields a Riccati-type equation:
Mx+ 10 + qox = A (3.3)
We set L =¢? — 4}7, and expand 7 as
(o]
n=e+y 1M, (3.4)
n=1

which is inserted into the Riccati equation (3.3), and equating the
coefficients of €, we obtain the recursion relations for I™ as fol-
lows:

1D =

1
—_ 1@ =
2q2x+

1
k2 = ZQ3x7

@ 1 1\?
I =_§ q4x + QZX_W ,

21(n+1)+1)(<n)+ Z
it j=ni,j>1

D19 =, (3.5)

where 1™ does not denote the conserved density of the ACH-KdV
equation.

Taking advantage of (3.1) and (3.3), we are able to rewrite
Eq. (2.7) as the divergence-type form

a[(1 —4BK*1)n — B> — 28Ky ]
+ dx[er (n2x — 20 + 6An) + 28Kk n — 2k* Bqym] = 0.
Substituting expansion (3.4) into (3.6) leads to

o0 oo
o [(1 —4Bk*0) Y IMe ™ — kY " IS
n=1

n=1

— 28K (e + i 1%-") (i‘ Iij)e‘j)i|

i=1 j=1

o o0
+ 9y |:Ol Z Ié’}()e—” -2 (E + Z I(i)e_i>
n=1

i=1
oo . . o0
x (e + ZI(])G_J) (E +y I(’)e_l>
=1 I=1

o0 oo
+6ar Yy IMe™ 42613 1M

n=1 n=1

oo
— 2 By (e +> 1“%"” =0.

n=1

(3.6)

(3.7)

Comparing the powers of € in Eq. (3.7) provides the following in-
finite conservation laws

Ft(n)'f'G)((n):Oa n=-1,0,1,2,..., (3.8)

where F™ and G®™ stand for conservation density and asso-
ciated flux, respectively. The conservation densities F™, n =
-1,0,1,2,..., are given by

FOD = 481210, FO = _48k21@ —28K21(",
FO = -4 + (1 - p)IV — BI2LY,) — 28K21,
FO = 48k 1@ + (1 — p)1? — k1Y) — 26121 + 1V 1],

F® = (1-pI® — 4?12 — gIC15) — 28131V

—28 Y 1D n>3, (3.9)
i+ j=n,i,j>1
and the associated fluxes G™, n=—1,0,1,2, ..., are given by
GV =—2k%Bgxe, GV =0,
GV =all) —6a((17)* +1¥) + 28131
3
— 2B IV + | 61% + — 1D |,
2k
3
@ =aly? —6a (1 +21V1?) 1+ 6al® + Sl?
+ 2831 — 2k% By 1P,
¢ =al) -2 [31‘"”) +3 > 100
i+j=n+1,i,j>1
L 3
1O DO 6ol 2 4 — o™
o2 Ol o
i+j+l=n,i,jI>1
+ 28131 — 2k2 By 1™ . (3.10)
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From (3.8)-(3.10), we observe that the first two equations of (3.8)
are trivial. However, the third conservation law F) = G® is ex-
actly Eq. (2.2).

So far, we conclude that the ACH-KdV equation (1.6) is inte-
grable with Lax pair, admits the bilinear Backlund transformation,
and has infinitely many conservation laws.

4. Darboux covariant Lax pair

In this section, we shall construct the Darboux covariant Lax
pair of (2.19) whose form is invariant under a gauge transforma-
tion.

Suppose that ¢ is a solution of the eigenvalue problem (2.19)
corresponding to the parameter A. Let us define the operator T as
T=0y—o0,

o =dIng, (4.1)

then we have a gauge transformation of the spectral problem (2.19)

(ﬁ = T(p. (4.2)
This maps the operator M(q) into a similar form

TM@TY =M@ =M@, (43)
and the corresponding covariant condition is satisfied by
d=q+Aq, Aq=2lng, (44)
i.e.

U=u+Au, Au=—20y. (4.5)

But this is not the case for the evolution equation of the spectral
problem (2.19). Hence, it is necessary for us to find another covari-
ant operator Ncoy(q) with appropriate coefficients, such that the
following equation holds by gauge transformation (4.2):

NCOV(ZI)=NCOV(E1)7 d=q+Aq, Aq=2nep. (4.6)

Assume ¢ is a solution of the following Lax pair

M@¢=21¢.  Neov(q)p =0,

Neov(q) = (1 — 3K*AB + b1)d; + 40td? — 4BKk*323; + b2dy + b3
=0, (4.7)

where b1, by, b3 are three functions to be determined. We re-
quire that it is sufficient for transformation T to map the oper-
ator Ncoy(q) to a similar one, that is

TNeov(@ T = Neov (@),

Neov(@) = (1 — 3k*AB + b1)d; + 403} — 4Bk*320; + b2dy + b3

=0, (4.8)
such that by, by, b3 satisfy the covariant condition
bj=bj(q+Aq)=bj+ Abj, j=1,2,3. (4.9)

By an operator calculation from (4.8), we obtain

E] — b] = Ab] = —Sﬂkzox,

Ez — by =Aby =120y — 4/3/(20’[,

b3 — b3 = Abs = 120095 — 8B8k*0x.+ + 120040 — 4Bk* 10
+ba x, (4.10)

and o satisfies

(1 —3B2Kk*% +b1)or + 4003, — ABk>0ax + booy + by

+ (b3 — b3)o =0. (4.11)

According to expression (4.10), it remains to determine the func-
tions b1, by, b3 in the form of polynomial expressions in terms of
g and its derivatives. We suppose

bj=Fj(@,qx 9, Gx.ts Gxxs -- ), J=1,2,3, (412)
and
Abj=AFj=Fj(@+ Aq,qx + Agx, Gt + Aqy, ...)

— Fi(q,qx. qt, - - -)s (4.13)

such that Aqrxi = 2(n@)xyr, k,1=1,2,..., and Ab; given
through (4.10).
Expanding the right-hand side of Eq. (4.13), we arrive at
Aby = AF1 = F14Aq+ F1,g,Aqx+ F1 g, Aqe + -+~
= —8,8k2c7x
= —4Bk* Aqx. (4.14)

which indicates that b; can be determined up to an arbitrary con-
stant cq, that is

b1 = F1(@x) = —4BK>qxx + C1. (415)
In the same way, we have
bz = Fa(qxx) = 60tqxx — Z,BkZQX,t + C2, (4.16)

where c; is an arbitrary constant.
Expanding the coefficients of the operator d; in Egs. (4.8) and
combining (4.15), one can readily obtain

CIxx=—02—Ux+Vs (4.17)

where y is an arbitrary constant.
Regrouping (4.17), (4.13) and the third equation of (4.10), we
get
Ab3 = AF3=F34Aq+ F3,q,Aqx+ F3q,Aqc + - --
=30 Aq3x — 3,3k2Aq2x,t,

thus we have

(418)

b3 = 3aq3x — 38K*qoxc +C3, (419)

with an arbitrary constant cs.
Choosing ¢ = 38Ak?, c; = 28k3, c3 =0, we get the covariant
evolution equation
Neov(@)p =0,
Neov(q) = (1 — 4Bk qax) 3 + 4d; — 4pk*82d;
+ (6aqax — 2Bk qx.c + 28k3)dx + 3(q3x — Bk qax.c)
-0 (4.20)
Thus, we obtain the following Darboux covariant Lax pair for
Eq. (2.2)
M(@¢ =29,
M(@) = 35 + qax.
Neov(@) = (1 — 4Bk*q2x) 3¢ + 40d; — 4BK*323;
+ (60qax — 2Bk qx.c + 2K) 0y
+ 3(aq3x — Bk qax,c).

Neov(@)@ =0,

(4.21)
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(1)
denominator
15F

(2)

numerator

i
I

Fig. 1. (1) The denominator of two-soliton wave determined by (5.5) with the parameters p;y =1, =1, 8 =3,k = 1. Red line: t = —1; Green line: t = 0; Blue line: t =1.
(2) The numerator of two-soliton wave determined by (5.5) with the parameters p; =1, =1,8 =3,k = 1. Red line: t = —1; Green line: t = 0; Blue line: t = 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

i.e.

Pxx —UP =A@,

(1+4BK%u) @ + 4@ — 4Bk Pxx e
+ (—6au + 2Bk*3; ug + 28k%)ox
+3(—aux + Bk*uc)p = 0. (4.22)

Moreover, the two operators N(q) and N¢o(q) are related through
the following formula

Neov(@) = N(@) + (38K*% — 38K*qax) 3¢ + 3d] — 3pKk* 050,
+ (30tqax — 30tA)dx + 30tq3x — 3K qax . (4.23)
Hence, we arrive at the following proposition:

Proposition. Under the gauge transformations (4.1) and (4.2), the ACH-
KdV equation (1.6) possesses the following Darboux covariant Lax pair

My =Aip,  Neovp=0,
Neov = (1 — 4Bk*q2x) ¢ + 4ard; — 4BK*20;
+ (60tqox — 2Bk qx.c + 28K°) 0y + 3(q3x — BK*q2nr)
=0, (4.24)

and the Miura transformation between u and il is

i=u-— 20y (4.25)

where o is given as in (4.1).

Moreover, one can easily check that the compatibility condition
of the Darboux covariant Lax pair (4.21) does lead to the ACH-KdV
equation (1.6) in Lax representation
[M(Q), Ncov (Q)]

= qox,¢t + 0 (q5x + 642xq3x)

+ B(2kq3x — 4k*qaxGax — 2k2q3xGn — k2 qaxc)
= Ut + o (Uxxx — BULy)

+ B(2Kk3uy + 4k%uue + 2kPuxdy "ue — K uye)

=0. (4.26)

5. Application of the Darboux transformation

In this section, we shall apply the above Darboux transforma-
tion (4.1) to give the explicit solutions of the ACH-KdV equation
(1.6). To see this, we substitute the seed solution u = 0 correspond-
ing eigenvalue A = piz, pi >0, i=1,2, into Lax pair (4.22), we get
the basic solution for the Lax pair (4.22)

@i =2cosh;,
4ap3 + 28k p;
=X+ r -7 vi, i=1,2, 51
& = Di 4,3k2Pi2 1 i (5.1)
where v;, i =1, 2, is arbitrary constant. From DT (4.2), we have
01 =0xIng; = pjtanhé&;. (5.2)
So, we get one-soliton solution of the ACH-KdV equation
il = —2p? sech? &. (5.3)
1

According to the DT (4.1) and (4.2), we get
@2 =Tz = (3 — 01)92 = 2p2 sinh & — 2pq tanh&; cosh &,
which implies

~ 2 2

D2, p; — P
0y = —= = —pitanh& + ,

2 pi1tanhé; — pytanhé;

4ap§+2/3k3pj 54)
Jp— X_i_i —’—]}" =]72 5.4

S=Pi 4piep? —1 o
Thus, we get a two-soliton solution
- 2(p? — p2)(p? sech? & — p? sech?
T (p1 pz)(p1 &1 1253 §2) - (5.5)

p1tanh&; — py tanhé,;

Next, we show special two-soliton solutions with singularities
based on (5.5). Letting p1 =1, pp =2, =1, =3, k=1, we can
see that the two-soliton solution (5.5) has a singularity xo when
t =to is given, and these singularities satisfy (see Fig. 1(1)):

0<x9<0.5 whent=-1,
Xo=0, whent=0,
—0.5<x9 <0, whent=1. (5.6)

In the above cases, the numerator part of (5.5) is greater than O
around the singularity xo (see Fig. 1(2)).
For our convenience, let us denote the denominator of (5.5) by

g(x,t) = pptanh&; — p; tanh&;,
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Fig. 2. The two-soliton wave determined by (5.5) with the parameters p; =1, =1, 8 =3,k =1; and the location of blowing up is different with different moment ¢. (i) Red
line: t = —1 with the point of explosion 0 < xo < 0.5; (ii) Green line: t =0 with the point of explosion xo = 0; (iii) Blue line: t =1 with the point of explosion —0.5 < xp < 0.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

then as shown in Fig. 1(1), the denominator of (5.5) is continuous
and tends to zero as x — Xg, and

lim g(x,t) = +0, lim g(x,t) =-0.
X=Xy X=Xy

So we have

lim & = +oo0, lim & = —oo,

XXy x—>xg

and

lim = lim a=0.

X—>—00 X— 400
According to Fig. 2, we may observe that the asymptotic behavior
of the two-soliton solution (5.5): it tends to zero as x — +o0o while
there exists a point of explosion for every different time t. The
points of explosion vary with different time ¢, and the location of
the blow up moves from left to right with increasing time t.

If we choose the seed solution u = 0 corresponding to eigen-

value A = —pf, p1 > 0, we have the basic solution
. 4ap3 + 28k py
= C0sé&1 + sinéq, =piXx+ ——t+v, (5.7
®1 &1 &, &1=n 4pICp? — 1 1, (5.7)
and
cosé&p —sinéq
o1 =0Inp;=p———
! *e1=n cos&1 + sin&;
= p1(sec(2&;) — tan(2&)). (5.8)
We get a periodic solution of Eq. (1.6)
~ 4p3 2 (a2
= =4pj(sec”(2&1) — sec(2£)) tan(2€y)).  (5.9)

1+ sin(2&;)

Substituting (5.9) into the Lax pair (4.22), and assuming A =
—p% > 0, then the eigenfunction satisfies

P2, cos§; —siné;

oOy=——="D1"_"7 5

2 cosé1 +siné;

B pi—p5
cos &1 —siné cos &y—sinéy ’
P15 $}+Sil'1 E: —DP255s E;Jrsin E;
4ap? +2BKp; :
i=pix+ ————t+4+v;, j=1,2, 510
=P 4pk2p? — 1 o )
4p?

2__ .2
where 03 x + 05 = —p5 + (cosEr TsmE 2
Thus, we get another soliton solution of Eq. (1.6)

2p?
(cos&p + sin&q)?
_ 2(pi — PP} — p3 — p3sin(2€1) + pisin(262))
[(p1 — p2) cos(é1 + &2) — (p1 + p2) cos(§1 — £2)1%°
(511)

a:

In this case, both the one-periodic and two-periodic solutions are
singular and their singularities appear periodically.

6. Conclusions

In this paper, we study a new generalization of the associated
Camassa-Holm equation. This equation is shown to be integrable
in the sense of Lax pair. The bilinear Bicklund transformations are
presented by virtue of the Bell polynomial theory. At the same
time, its infinite conservation laws are constructed, and conserved
densities and fluxes are given with explicit recursion formulas. Fur-
thermore, a Darboux transformation for this equation is derived
with the help of the gauge transformation between two Lax pairs.
As an application, soliton and periodic wave solutions are given
through the Darboux transformation. Simultaneously, we analyze
the asymptotic behavior of the two-soliton solution, and we ob-
serve it tends to zero as x — +oo while there exists a point of
explosion for every different time t. The points of explosion vary
with different time t, and the location of the blow up moves from
left to right with increasing time t along with x-axis.
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