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Abstract—Detecting edges is an important task in pro-
cessing images in order to see objects from SAR data.
In this work, the received data is first filtered and then
back-projected. The edges are detected in both the x and
y directions and results shown. SAR segmented images
generated using this technique, are provided from a pub-
licly available SAR data set. In our work, this technique
is applied on real SAR data with significant results.

Index Terms—Synthetic Aperture Radar, Back-projection, Edge
Detection, Imaging

I. INTRODUCTION

In SAR imaging an antenna sends electromagnetic waves
and the scattered waves are detected. Using the method
proposed by[6] in the reconstruction of images, edges can be
detected to try and identify objects in the scene. This process
has many applications, especially now that identification is so
important.

Edge detection in images is an important task used to locate
and describe objects within that image. Usual methods for
edge detection are Canny, Prewitt, and Sobel. These stated
methods work after the image has been formed. The method
proposed by[6] does edge detection by applying a differential
filter directly to the SAR data at the backprojection step.

In most areas of SAR the received signal model is derived
from Maxwell’s equations. The derivation is a very important
step that must be taken by anyone studying radar. A complete
understanding can help to find better ways to model this in
the future. This can also lead to different methods of image
reconstruction.

In this paper, the mathematical model for reconstructing
images is reviewed and the process of edge detection defined
by[6] is implemented on a real SAR dataset. The method
detects edges from the received signal before regular image
reconstruction. New Matlab code was written following[5],
[11] combined with this edge detection method to produce
images with edges which are well defined. Then applying a
thresholding algorithm, the final image is produced.

This paper is organized as follows: In Section 2, the SAR
received signal is modelled, the forward model and Filtered
Backprojection method are shown, and the edge detection
method[6] is discussed. In Section 3, the experiments and
results are outlined and presented. Finally, the discussion is
concluded in Section 4.

II. MATHEMATICAL MODEL

In this section the origin of the received signal (s, ) model
is reviewed following a version of[7], and the forward model
and filtered backprojection is derived. It is important to re-
establish these models for persons not completely familiar with
this area.

A. Wave Propagation
The scalar wave equation
( 2 at2

c2(x)

(where the function c is the wave propagation speed) is
commonly used for SAR. This model works very well for the
propagation of electromagnetic waves in dry air. It is assumed
that the target is a sufficient distance from the radar and that in
dry air ¢(x) = ¢p (where ¢ is the speed of light in vacuum).

JU(t,z) =0 (1)

B. Field from an Antenna

The field emanating from an antenna U®" satisfies
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Here J, is the time derivative of the current distribution over
the antenna, and P(t) is the waveform sent to the antenna.
Writing P in terms of its Fourier transform p, (3) becomes
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C. Far-Field Approximation

The assumption that the size of the antenna is much smaller
than the distance from the target location x to center of the
antenna g is made. So |y — yo| < |x — yo| where y is a point
on the antenna. Then
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is called the far field expansion. It makes use of the definition
of absolute value and the Taylor expansion /1 +a =1+75 +
O(a?). Using (5) in (4)
) e~ w(t—|z—yol/co)
Un(t,z) =~ / —_— X
47 |z — yol
e‘iw(x_yﬂ)'(y_y")p(w)Js(y)dwdy (6)

is obtained.

D. Scattering Model

The model used for wave propagation including the source
( 2 _ a1&2
()

Using the fact that U = U + U*¢, (2) and some algebra, (7)
becomes

is

U (t x) = —P(t)Js(2). ()
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This V is called the reflectivity function. Its discontinuities are
what need to be recovered. Writing (8) as an integral equation,
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then using the Born approximation and evaluating the integral
with respect to 7
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is obtained.[7] This approximation basically replaces the full
field by the incident field. Now evaluating the partial derivative
and using (6), converts (10) into
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Parametrizing the surface by v = {v(s) : Smin < s <
Smaz }[9] and denoting the map from the scene V' to data
r by F the received signal is modeled following [7]

/ e—i27rw(t—R(s,x)/CO) %

Az, w, s)V(x)dwde,

r(s,t) = F[V](s,t) =
(12)

where R(s,x) = 2|x —~(s)| with y(s),xeR? xeR?, and
roman small letters in R. An assumption is made that the
amplitude A of (12) satisfies
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where K is any compact set. This assumption makes the
forward operator F a Fourier Integral Operator (FI0)[6]

E. Filtered-Backprojection

Here V() is reconstructed by inverting F with another FIO
KC such that the kernel of CF is approximately a Dirac delta
function.[8] So the operator KC is designed to reconstruct the
image according to.[7] Hence the reconstructed image V'(z)
is

V(z) = K[r](z) = /€i2m(t*R(s’z)/C°)Q(2,w,s)r(s,t)dwdsdt.

(13)
Therefore the point spread function T of K is

T(z,x) = /eiQW(R(S’x)_R(“”’Z))/COQ(z,s,w)A(az,s,w)dwds

(14)
where it is common to choose ) such that T'(z, x) is a delta
function, but for edge detection (' must be obtained according
to.[6]

F. Edge detection of SAR Data

Here the matched filter Q’ is obtained following.[6] But first
according to[9]

V(z)z/Q eﬂw(w—z)‘gxgz(£)V(w)dwd§
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where 2, = {&(w, s, 2)|A(z, s,w) # 0} and xgq. is a smooth
cut off function equal one in the interior of ), and zero in
the exterior. Then[6] defines the filter )’ generally as

Q&) = aili, €

)

pi

where «; > 0 and p;eR. So the point spread function of
the edge detecting reconstruction operator is

T(z,z)~ Zapi /6i27r(sz)'5

Since this filter helps control directions of what needs to
be enhanced, in this paper scenes are reconstructed in this
manner.

pi d£

iy, - € (16)

ITII. EXPERIMENTS

In these experiments the process described above is written
into Matlab code written by[5] to be able to detect the edges
from two data sets. The first data set is the ”Gotcha Volumetric
SAR Data Set, Version 1.0,” consisting of SAR phase history
data collected at X-band with a 640 MHz bandwidth with
full azimuth coverage at 8 different elevation angles with
full polarization. The second data set is the “Civilian Vehicle
Radar Data Domes” dataset consisting of simulated X-band
scattering data for civilian vehicles.
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For the first data set the scene is imaged with edges en-
hanced in all directions, the x-direction only (with y = (1,0)
in (16)), and the y-direction only (with p = (0,1). For the
second dataset three vehicles were imaged. The Toyota Camry,
Jeep, and the Toyota Tacoma served this experiment. The
figures show reconstructed (part a) and thresholded (part b).
The iterative thresholding method proposed by[6] is used with
some minor changes.

IV. CONCLUSIONS

The edge detection method used here worked with both
datasets without very much difficulty. Currently, this method is
being implemented on other datasets and synthetic data. This
work has shown that the method defined by[6] works on real
datasets as well as synthetic datasets. It is important to note
that much work is still needed in edge detection in the presence
of clutter and noise. In future work it will be discussed how
statistical methods can improve the image reconstruction in
the presence of clutter and noise.
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Fig. 2. Enhancement of edges in
first dataset.(Left)Reconstructed image
a=0.8.(Right)Thresholded image with intensity=.51.
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Fig. 3. Jeep Grand Cherokee with edges enhanced in all di- Fig. 4. Toyota Tacoma with edges enhanced in all direc-
rections from second dataset.(Left)Reconstructed image with p=1, tions from second dataset.(Left)Reconstructed image with p=I,
a=0.8.(Right)Thresholded image with intensity=.70 a=0.8.(Right) Thresholded image with intensity=.53
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