7.1 Symmetric Matrices

An $n \times n$ matrix A is symmetric if $A^{T}=A$
$\underline{E X} \quad(a) \quad\left[\begin{array}{ll}1 & 2 \\ 2 & 7\end{array}\right] \quad$ is symmetric.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
2 & 7
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 2 \\
2 & 7
\end{array}\right]} \\
& \text { (b) }\left[\begin{array}{cc}
1 & -11 \\
5 & 7
\end{array}\right] \text { is not symmetric. } \\
& \text { (c) }\left[\begin{array}{ccc}
1 & 4 & 6 \\
4 & 2 & 10 \\
6 & 10 & 3
\end{array}\right] \text { is symmetric. }
\end{aligned}
$$

$\underline{\text { Properties of Transpose (Ch 2) }}$

$$
\begin{aligned}
(A+B)^{T} & =A^{T}+B^{T} \\
(A B)^{T} & =B^{T} A^{T} \\
(C A)^{T} & =C A^{T} \\
\left(A^{-1}\right)^{T} & =\left(A^{T}\right)^{-1}
\end{aligned}
$$

$\underline{\text { Orthogonal Matrices }}$

Q is orthogonal matrix if $Q^{T} Q=I$

In this case
$\bullet Q^{-1}=Q^{T}$ (easy to find Q^{-1} : find $\left.Q^{T}\right)$

- The columns of Q are an orthonormal set of vectors; or thogonal length 1

$\underline{\text { Properties of Symmetric Matrices }}$

(1) If A, \underline{B} are symmetric $n \times n$ matrices

$$
(A+B)^{T}=A^{T}+B^{T}=(A+B)
$$

So $A+B$ is symmetric.
(2) If A, B are symmetric $n \times n$ matrices,

$$
(A B)^{T}=B^{T} A^{T}=B A \neq A B
$$

$A B$ is usually not symmetric.
(3) If C is any $n \times n$ matrix.
then $B=C^{T} C$ is symmetric:

$$
{\underline{\left(C^{T} C\right)}}^{T}=C^{T}\left(C^{T}\right)^{T}=\underline{C^{T} C}
$$

(4) If D is a diagonal matrix

$$
\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & d_{n}
\end{array}\right]
$$

D is symmetric

Eigenvalues + Eigenvectors of Symmetric Matrices

EX $\quad A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
1-\lambda & 5 \\
5 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-25 \\
& =\lambda^{2}-2 \lambda-24 \\
& =(\lambda-6)(\lambda+4)
\end{aligned}
$$

The eigenvalues are $\lambda=6,-4$. Real, not complex
$\lambda_{1}=6, \quad \overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 6\end{array}\right]=6\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\lambda_{2}=-4, \overrightarrow{v_{2}}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}4 \\ -4\end{array}\right]=-4\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
$\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]=(-1)+(1)=0$
Eigenvectors are orthogonal.

We found 2 independent eigenvectors for the 2×2 $\operatorname{matrix} A$. So matrix A is diagonalizable.

$$
A=P D P^{-1}
$$

Symmetric $n \times n$ matrix will have n independent eigenvectors.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}
$$

E-vectors E-values
$P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ is almost an orthogonal matrix.
The columns are orthogonal, but may not have length $\|V\|=1$
$\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\left\|\overrightarrow{v_{1}}\right\|=\sqrt{\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]}=\sqrt{2}$
$\overrightarrow{u_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is still an eigenvector
for $\lambda=6$, but $\left\|\overrightarrow{u_{1}}\right\|=1$.
$\overrightarrow{v_{2}}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \quad\left\|\overrightarrow{v_{2}}\right\|=\sqrt{2}$
$\overrightarrow{u_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is also an eigenvectors
for $\lambda=-4$, but $\left\|\overrightarrow{U_{2}}\right\|=1$.
So redo the diagonalization:

$$
A=Q D Q^{-1}
$$

$$
=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad\left[\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right] \quad\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{-1}
$$

This is an orthog. matrix $\quad \downarrow Q^{-1}=Q^{T}$
$A=\underset{\text { Rotate } 45^{\circ}}{\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]} \underset{\text { Rotate }-45^{\circ}}{\left[\begin{array}{cc}6 & 0 \\ 0 & -4\end{array}\right]}$
Orthogonal Diagonalization of A.
$A^{100}=Q D^{100} Q^{T}$

$$
=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad\left[\begin{array}{cc}
6^{100} & 0 \\
0 & (-4)^{100}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { EX } A=\left[\begin{array}{ccc}
7 & -4 & 4 \\
-4 & 5 & 0 \\
4 & 0 & 9
\end{array}\right] \\
& \lambda_{1}=13, \overrightarrow{v_{1}}=\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right] \rightarrow\left\|\overrightarrow{v_{1}}\right\|=\sqrt{4+1+4}=\sqrt{9}=3 \\
& \lambda_{2}=7, \overrightarrow{v_{2}}=\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right] \rightarrow\left\|\overrightarrow{v_{2}}\right\|=\sqrt{1+4+4}=3 \\
& \lambda_{3}=1, \quad \overrightarrow{v_{3}}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \rightarrow\left\|\overrightarrow{v_{3}}\right\|= \\
& A=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\
\frac{-1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{ccc}
13 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\
D & \frac{-1}{3} & \frac{2}{3} \\
\frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & \frac{-1}{3}
\end{array}\right] \\
& Q^{T}=Q^{-1}
\end{aligned}
$$

