6.5 Method of least Squares

Inconsistent system. But we want to find $\left(x_{1}, x_{2}\right)$ that comes as close as passible to being a solution

$$
\begin{aligned}
& x_{1}+x_{2}=0 \\
& x_{1}+2 x_{2}=1 \\
& x_{1}+3 x_{2}=3 \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]}
\end{aligned}
$$

If we pick a $\vec{X}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and compute
$A \vec{X}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$,
We measure how close this is to solving the system by $A \vec{X}-\vec{b} \quad$ (Residual Vector)
$\|A \vec{X}-\vec{b}\| \quad$ (Residual error)
God is to find an \vec{X} so that $\|A \vec{X}-\vec{b}\|$
is as small as possible.

Finding $\left(x_{1}, x_{2}\right)$ to minimize $\|A \vec{X}-\vec{b}\|$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right] \\
x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] & =\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

No solution for $x_{1}, x_{2} \Rightarrow\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ is not a linear
combination of $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
So $\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ is not in span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$

$\vec{b}-A \vec{X}^{*} \quad$ orthogonal to plane
$\Rightarrow \vec{b}-A \vec{X}^{*}$ orthogonal to every vector in plane
$\Rightarrow \vec{b}-A \vec{X}^{*} \quad$ is orthogonal to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left(\vec{b}-A \vec{X}^{*}\right)=0 \\
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left(\vec{b}-A \vec{X}^{*}\right)=0 \quad \vec{U} \cdot \vec{V}=0} \\
& \vec{U}^{T} \vec{V}=0 \\
& \Rightarrow \quad\left[\begin{array}{llll}
1 & 1 & 1
\end{array}\right]\left(\vec{b}-A \vec{X}^{*}\right) \quad=\quad 0 \\
& {[123]\left(\vec{b}-A \vec{X}^{*}\right)=0} \\
& \Rightarrow \frac{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]}{A^{T}}\left(\vec{b}-A \vec{X}^{*}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow \quad A^{T}\left(\vec{b}-A \vec{X}^{*}\right) \quad=\quad \overrightarrow{0} \\
& \Rightarrow \quad A^{T} \vec{b}-A^{T} A \vec{X}^{*} \quad=\quad \overrightarrow{0} \\
& \Rightarrow \quad A^{T} A \vec{X}^{*} \quad=A^{T} \vec{b}
\end{aligned}
$$

The normal equation of a system

$$
A \vec{X}=\vec{b}
$$

is

$$
A^{T} A \vec{X}=A^{T} \vec{b}
$$

A solution \vec{X}^{*} of the normal eq is called a $\underline{\text { least squares }}$
solution of $A \vec{X}=\vec{b} . \quad\left\|A \vec{X}^{*}-\vec{b}\right\| \quad$ is minimized. Also $A \vec{X}^{*}$ is the projection of \vec{b} onto the span of the columns of A. (colA)
$\underline{\text { Least Squares + Projections }}$
$\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$

- Find the least squares solution by solving the normal equation.
$A=\underset{2 \times 3}{\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right]} \underset{3 \times 2}{[} \underset{b}{\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]}$
$A^{T} A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 4\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right]=\left[\begin{array}{cc}6 & 0 \\ 0 & 21\end{array}\right]$
$A^{T} \vec{b}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 4\end{array}\right]\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}12 \\ 21\end{array}\right]$
Normal equation $A^{T} A \vec{X}=A^{T} \vec{b}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
6 & 0 \\
0 & 21
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
12 \\
21
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
6 & 0 & 12 \\
0 & 21 & 21
\end{array}\right] \backsim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

The least square solution is $x_{1}=2, x_{2}=1$.

How close is $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ to being a solution of
$\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right] ?$
with $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
$A \vec{X}=\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 2\end{array}\right]$
$\begin{aligned}\|A \vec{X}-\vec{b}\| & =\left\|\left[\begin{array}{l}4 \\ 5 \\ 2\end{array}\right]-\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]\right\| \\ & =\left\|\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right]\right\|=\sqrt{9+4+1} \\ & =\| \sqrt{14}=3.74\end{aligned}$
Finally, $\left[\begin{array}{l}4 \\ 5 \\ 2\end{array}\right]$ is the projection of $\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$ onto the span

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] .
$$

- A second approach based on the fact that the columns of A are orthogonal:
$A=\left[\begin{array}{rr}1 & 2 \\ 2 & 1 \\ -1 & 4\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$

Since $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$ are orthogonal, the proj.
of \vec{b} onto the plane

$$
\begin{aligned}
\vec{b}_{\text {proj }} & =\frac{\vec{b} \cdot \vec{U}}{\vec{U} \cdot \vec{U}} \vec{U}+\frac{\vec{b} \cdot \vec{V}}{\overrightarrow{\vec{V}} \cdot \vec{V}} \\
& =\frac{\left[\begin{array}{c}
7 \\
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]} \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\frac{\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]}{\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]} \cdot\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\vec{b}_{\mathrm{proj}} & =\frac{12}{6}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\frac{21}{21}\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] \\
& =2\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+1\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$

The least squares solution of $A \vec{X}=\vec{b}$ is $\vec{X}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
The projection $\vec{b}_{\text {proj }}=\left[\begin{array}{l}4 \\ 5 \\ 2\end{array}\right]$

