5.6 Dynamical Systems

EX a Preditu - Prey System

Let Q_{0}, R_{0} represent the number of owls + rats living in an area, counted at some fixed initial time. Suppose the number of owls + rats K months later is Q_{k}, R_{k} where from one month to the next,

$$
\begin{aligned}
& Q_{k+1}=(.5) Q_{k}+(.4) R_{k} \\
& R_{k+1}=(-.104) Q_{k}+(1.1) R_{k}
\end{aligned}
$$

In matrix form,

$$
\left[\begin{array}{c}
Q_{k+1} \\
R_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
.5 & .4 \\
-.104 & 1.1
\end{array}\right]\left[\begin{array}{l}
Q_{k} \\
R_{k}
\end{array}\right]
$$

We can find a formula for the populations of owls + rats after K months using eigenvalues + eigenvectors.

The eigenvalues and eigenvector for A

$$
A=\left[\begin{array}{cc}
.5 & .4 \\
-.104 & 1.1
\end{array}\right]
$$

are

$$
\begin{aligned}
& \lambda_{1}=1.02 \quad \overrightarrow{V_{1}}=\left[\begin{array}{l}
10 \\
13
\end{array}\right] \\
& \lambda_{2}=.58 \quad \overrightarrow{V_{2}}=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
\end{aligned}
$$

Suppose

$$
\left[\begin{array}{l}
Q_{0} \\
R_{0}
\end{array}\right]=c_{1}\left[\begin{array}{l}
10 \\
13
\end{array}\right]+c_{2}\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

Then

$$
\left[\begin{array}{c}
Q_{k} \\
R_{k}
\end{array}\right]=c_{1}(1.02)^{k}\left[\begin{array}{l}
10 \\
13
\end{array}\right]+c_{2}(.58)^{k}\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

As K increases, $(.58)^{k} \longrightarrow 0$

$$
\left[\begin{array}{c}
Q_{k} \\
R_{k}
\end{array}\right] \approx c_{1}(1.02)^{k}\left[\begin{array}{l}
10 \\
13
\end{array}\right]
$$

Both Population will grow by about 2% each month

