Basis, Coordinates, Dimension of Subspaces

2.9

Preliminary I deas: The usual coordinate system for \Re^2

Is related to combination of vector?

the weights (3,2) are coordinates

Another Coordinate System for \Re^2 :

P has coordinates (2, 2) $\vec{P} = 2\vec{v_1} + 2\vec{v_2}$ in terms of $\vec{v_1}, \vec{v_2}$ <u>Definition</u> A <u>basis</u> for a coordinate system on a subspace H of \Re^n is a set of vectors

$$\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_p\}$$

in H that are

- (a) linearly independent, and
- (b) span H.

<u>Note</u> Suppose $\{\vec{v}_1, \cdots, \vec{v}_p\}$ is a basis for H.

• Span $\{\vec{v}_1, \cdots, \vec{v}_p\} = H$ is important;

Every \vec{u} in H is some combination of the basil vectors.

$$\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v_p}$$

• Independence is important : the combinations are unique.

$$\vec{u} = c_1 \vec{c}_1 + \cdots + c_p \vec{v}_p$$

$$- \vec{u} = d_1 \vec{v}_1 + \cdots + d_p \vec{v}_p$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots$$

$$\vec{0} = (c_1 - d_1) \vec{v}_1 + \cdots + (c_p - d_p) \vec{v}_p$$

Independent $\Rightarrow c_1 = d_1, \cdots, c_p = d_p$

• The weights c_1, \cdots, c_p of

$$\vec{u} = c_1 \vec{v}_1 + \dots + c_p \vec{v_p}$$

are called the <u>coordinates</u> of \vec{u}

relative to the basis $\{\vec{v}_1, \cdots, \vec{v_p}\}$

• If H has a basis with P vectors then all other bases of H have P vectors.

• The <u>dimension</u> of H is the number of vectors in any basis used to create a coordinate system for H.

<u>EX</u> (a) Bases for \Re^2

Two linearly independent vectors.

• $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ Another basis The coordinate system generated by this basis

•
$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$
 basis

The coordinate system generated by this basis

(There are many other bases for \Re^2)