Basis, Coordinates, Dimension of Subspaces

Preliminary Ideas: The usual coordinate system for \Re^{2}

Is related to combination of vector?

$$
\begin{aligned}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]=} & \underset{\uparrow}{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \underset{\uparrow}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \text { the weights (3,2) are coordinates }
\end{aligned}
$$

Another Coordinate System for \Re^{2} :

P has coordinates (2, 2)
$\vec{P}=2 \overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}$
in terms of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$

Definition A basis for a coordinate system on a subspace H of \Re^{n} is a set of vectors

$$
\left\{\vec{v}_{1}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{p}}\right\}
$$

in H that are
(a) linearly independent, and
(b) $\operatorname{span} H$.

Note Suppose $\left\{\vec{v}_{1}, \cdots, \overrightarrow{v_{p}}\right\}$ is a basis for H.

- Span $\left\{\vec{v}_{1}, \cdots, \overrightarrow{v_{p}}\right\}=H$ is important;

Every $\quad \vec{u}$ in H is some combination of the basil vectors.
$\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \overrightarrow{v_{p}}$

- Independence is important:
the combinations are unique.

$$
\begin{array}{rlclllc}
\vec{u} & = & c_{1} \vec{c}_{1} & & + & \cdots & + \\
- & c_{p} \overrightarrow{v_{p}} \\
\cdots & = & d_{1} \vec{v}_{1} & + & \cdots & + & d_{p} \overrightarrow{v_{p}} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\overrightarrow{0} & = & \left(c_{1}-d_{1}\right) \vec{v}_{1} & + & \cdots & + & \left(c_{p}-d_{p}\right) \vec{v}_{p}
\end{array}
$$

Independent $\Rightarrow c_{1}=d_{1}, \cdots, c_{p}=d_{p}$

- The weights c_{1}, \cdots, c_{p} of

$$
\vec{u}=c_{1} \vec{v}_{1}+\cdots+c_{p} \overrightarrow{v_{p}}
$$

are called the coordinates of \vec{u}
relative to the basis $\left\{\vec{v}_{1}, \cdots, \overrightarrow{v_{p}}\right\}$

- If H has a basis with P vectors then all other bases of H have P vectors.
- The dimension of H is the number of vectors in any basis used to create a coordinate system for H.

EX (a) Bases for \Re^{2}
Two linearly independent vectors.

- $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ Standard basis for \Re^{2}

- $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ Another basis

The coordinate system generated by this basis

$\cdot\left\{\left[\begin{array}{l}2 \\ 2\end{array}\right]\left[\begin{array}{l}{[0}\end{array}\right]\right\}^{\text {ous }}$
The coordinate system generated by this basis

(There are many other bases for \Re^{2})

