2.8 Subspaces of \Re^{n}

Definition: A set of vectors H in \Re^{n} is called a subspace of \Re^{n} if
(a) The zero vector of \Re^{n} is in H.
(b) For every \vec{u}, \vec{v} in $H, \vec{u}+\vec{v}$ is also in H.
(c) For every \vec{u} in H, scalar $c, c \vec{u}$ is also in H.

EX \Re^{2}
(a) $H=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: x_{1} \geqslant 0\right\}$
$\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in $H ;\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ is not in H.
$\overrightarrow{0}$ is in $H \quad \vec{u}+\vec{v}$ is in H ?

$$
\begin{gathered}
H \text { is not a subspace; }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { is in } H, \\
\text { but }-2\left[\begin{array}{lr}
1 & -2 \\
1 & -2
\end{array}\right]-2 \ngtr \text { is not in } H \text {. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (b) } H=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]: x_{1} x_{2} \geqslant 0\right\} \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \text { is in } H ;\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \text { is not in } H .}
\end{aligned}
$$

H is not a closed under vector addition.

$$
\begin{aligned}
& \underset{\nwarrow}{\left[\begin{array}{l}
1 \\
2
\end{array}\right]}+\underset{\nearrow}{\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]}=\underset{\uparrow}{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
& \text { in } H \\
& \text { Not in } H
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} \\
& {\left[\begin{array}{l}
2 \\
4
\end{array}\right] \text { is in } H ;\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \text { is not in } H .}
\end{aligned}
$$

H is a Subspace of \Re^{2}.

Subspaces of \Re^{2} :

$H=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \quad H=\operatorname{Span}\{\vec{V}\} \quad H=\Re^{2}$
Subspaces of \Re^{3} :

Line through origin

Plane through origin (not \Re^{2})

A set of vectors H in \Re^{n} is called a subspace of \Re^{n} if
(a) the zero vector of \Re^{n} is in H
(b) for every \vec{u}, \vec{v} in $H, \vec{u}+\vec{v}$ is also in H,
(c) for every \vec{u} in H and scalar $c, c \vec{u}$ is also in H.

In $\Re^{2}:\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$, lines through origin, \Re^{2}
In $\Re^{3}:\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$, lines + planes through origin, \Re^{3}
In \Re^{4} :

Note If $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{p}}$ are vectors in \Re^{n}, and let

$$
H=\operatorname{span}\left\{\vec{V}_{1}, \cdots, \vec{V}_{p}\right\}
$$

Then
(a) $\overrightarrow{0}=0 \overrightarrow{v_{1}}+0 \overrightarrow{v_{2}}+\cdots+0 \overrightarrow{v_{p}}$ shows $\overrightarrow{0}$ is in H
(b) If \vec{U}, \vec{V} are in H, then
$\vec{U}=a_{1} \overrightarrow{v_{1}}+\cdots+a_{p} \overrightarrow{v_{p}} \vec{V}=b_{1} \overrightarrow{v_{1}}+\cdots+b_{p} \overrightarrow{v_{p}} \vec{U}+\vec{V}=$
$\left(a_{1}+b_{1}\right) \overrightarrow{v_{1}}+\cdots+\left(a_{p}+b_{p}\right) \overrightarrow{v_{p}}$
So $\vec{U}+\vec{V}$ is also in H.
(c) If \vec{U} is in H, and c is any scalar,

$$
\begin{aligned}
\vec{U} & =a_{1} \overrightarrow{v_{1}}+\cdots+a_{p} \overrightarrow{v_{p}} \\
c \vec{U} & =\left(c a_{1}\right) \overrightarrow{v_{1}}+\cdots+\left(c a_{p}\right) \overrightarrow{v_{p}}
\end{aligned}
$$

so $c \vec{U}$ is also in H.

So $H=\operatorname{span}\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{p}}\right\}$ is a subspace.

Two Subspaces Related to Matrices

Suppose $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \cdots & \overrightarrow{a_{n}}\end{array}\right]$ is an $m \times n \quad$ matrix.
(a) the column space of A is the set of all linear combinations of the columns of A.

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}}\right\}
$$

(b) the null space of A is the set of all solutions of $A \vec{X}=\overrightarrow{0}$
$\operatorname{Nul}(\mathrm{A})$

EX $A=\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ -1 & 1\end{array}\right]$
(a) Is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in the column space of A ?

$$
\begin{gathered}
x_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { (Important Eq.) } \\
{\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right] \backsim \cdots \backsim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]}
\end{gathered}
$$

The important equation has no solution.
So $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not in the $\operatorname{Col}(A)$.
(b) Is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in the null space of A ?

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { (Important Eq.) }
$$

Check:

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

So $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is not in $\operatorname{Nul}(A)$.

