2.8 Subspaces of R"

Definition: A set of vectors H in " is called a subspace
of /" if

(a) The zero vector of R" is in H.

(b) For every @, v in H, u+ v'is also in H.

(c) For every @ in H, scalar ¢, cu is also in H.
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A set of vectors H in R" is called a subspace of " if
(a) the zero vector of " is in H
(b) for every u,v'in H, @ + ¥ is also in H,

(¢) for every @ in H and scalar ¢,cu is also in H.
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Note If v1, 03, -+, v, are vectors in ", and let
H = spcm{‘?l, e ,‘7;9}

Then
(a) 0= 00] 4 00 + - - - 4 00}, shows 0 is in H
(b) If U,V are in H then

ﬁ:alv_i—i—---—i—apv_];V:blv_i+---+bpv};(7—|—‘7:

(a1 +b1)01 + -+ -+ (ap, + by)v,,

So (7+VisalsoinH.

(¢) If U isin H, and ¢ is any scalar,
U = av, + - + au)
U = (ca))vdi + - + (ca,)v,

so cU 1s also in H.

So H = span{vi,--- ,v,} is a subspace.



Two Subspaces Related to Matrices

Suppose A = [ a --- a, ] isan m X n matrix.

(a) the column space of A is the set of all linear

combinations of the columns of A.

Col(A) = Span{ay,--- ,dn}

(b) the null space of A is the set of all solutions of
AX =0

Nul(A)
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