Vector Graphics	Raster or Bitmap Graphics
Draws the image through a sequence of commands and mathematics that draws lines, circles, and other basic shapes.	Treats an image as a grid of dots (pixels) in which each dot is given its own color.
PDF, PS, SVG	BMP, TIFF, GIF, JPEG
PowerPoint, Adobe Illustrator, Corel Draw	PhotoShop, PaintShop
Resolution independent: no loss of quality as image is resized.	Resolution dependent; loss of quality as image is enlarged.
Fonts, line drawings, charts and graphs	Scanners, digital cameras, photos

2.7 Computer Graphics

- An application of matrix multiplication Vector \forall Graphics

Instructions on how to draw objects using line segments, circles, \cdots

A triangle can represented as a list of points (vertices) with the understanding that we draw straight line segments from one pt to another.

$$
B=\begin{gathered}
\text { coord of points } \\
\downarrow \\
\downarrow \\
\downarrow \\
{\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]}
\end{gathered}
$$

To manipulate or transform the triangle, we can use matrix transformations:

$$
\left.\left.\begin{array}{rl}
A= & 2 \times 2 \text { (rotation, reflection, scaling, shear...) } \\
A B= & A\left[\begin{array}{llll}
\overrightarrow{p_{1}} & \overrightarrow{p_{2}} & \overrightarrow{p_{3}} & \overrightarrow{p_{4}}
\end{array}\right] \\
= & {\left[\begin{array}{lll}
A \overrightarrow{p_{1}} & A \overrightarrow{p_{2}} & A \overrightarrow{p_{3}}
\end{array} \overrightarrow{p_{4}}\right.}
\end{array}\right]\right)
$$

EX (a) Scale the triangle by $\frac{1}{2}$
obj. $B=\left[\begin{array}{llll}0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$

$\begin{aligned} \operatorname{tran} . A= & {\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right] } \\ & \uparrow \\ & \text { Transform }\left[\begin{array}{l}1 \\ 0\end{array}\right]\end{aligned}$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \quad \text { New obj. } \\
& \text { tran.obj. } \\
&=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

(b) Rotate triangle by 60° counter clockwise around the origin
obj. $B=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
trans. $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad \theta=60^{\circ}$

$$
A B=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
0 & 2 \cos \theta & -2 \sin \theta & 0 \\
0 & 2 \sin \theta & 2 \cos \theta & 0
\end{array}\right]
$$

$$
\cos 60^{\circ}=\frac{1}{2} \quad \sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

$$
2 \cos 60^{\circ}=1 \quad 2 \sin 60^{\circ}=\sqrt{3}
$$

$$
\begin{aligned}
A B & =\left[\begin{array}{cccc}
0 & 1 & -\sqrt{3} & 0 \\
0 & \sqrt{3} & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 1 & -1.7 & 0 \\
0 & 1.7 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Basic 2-D Graphics Transformations

Rotation around the origin by θ

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Scalings

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & s
\end{array}\right] \quad\left[\begin{array}{ll}
s & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right]
$$

Vertical scaling by factor s Horizonal Scaling scaling

Shear $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$
Horizontal vertical

Reflections

Composite Transformations

Combining 2 or more transformations

$$
\begin{array}{ccc}
a_{1} \vec{X} & a_{1} & \text { transforms }
\end{array} \vec{X}
$$

Matrices multiply to produce a single matrix A.

Ex. Reflect across $x_{2}=x_{1}$ and then rotate counterclockwise by $\pi / 4\left(45^{\circ}\right)$.

Method (1) Construct a matrix for this combined transformation by computing

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Method (2) Construct a matrix by matrix multiplication

$$
\begin{aligned}
a_{1} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
a_{2} & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
\end{aligned}
$$

Combine a_{1}, a_{2} by matrix multiplication

$$
\begin{aligned}
& \begin{array}{lll}
a_{1} a_{2} & \text { or } & a_{2} a_{1} \\
a_{2} & \left(a_{1} \vec{X}\right) \\
\nearrow & \nwarrow \\
2^{n d} & 1^{s t}
\end{array} \\
& a_{2} a_{1}=\left[\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / \sqrt{2} & \sqrt{2} / 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]= \\
& {\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]}
\end{aligned}
$$

Translation + Homogeneous Coordinates

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Mult. by 2×2 matrix will not translate a figure
Homogeneous coordinates - representing points in 2D as points in 3D.

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \longleftarrow \text { Add a row of } 1
$$

Suppose we want to translate (x, y) h units right and k units up.
the translate

$$
\left[\begin{array}{c}
x+h \\
y+k \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & h \\
0 & 1 & k \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

EX Triangle $B=\left[\begin{array}{llll}0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] \longleftarrow y^{\prime} s$
Translate 3 right, 4 up Matrix $\quad A=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]$
Translate Triangle

$$
\begin{aligned}
A B & =\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
3 & 5 & 3 & 3 \\
4 & 4 & 6 & 4 \\
1 & 1 & 1 & 1
\end{array}\right] \stackrel{x^{\prime} s}{\longleftarrow} \\
& y^{\prime} s \\
&
\end{aligned}
$$

Note: Any other 2×2 matrix transformation can be represented in homogeneous coordinates as a 3×3 matrix
$A=\left[\begin{array}{c}\cos \theta \\ \sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right] \rightarrow\left[\begin{array}{cccc}\cos \theta & -\sin \theta & : & 0 \\ \sin \theta & \cos \theta & \vdots & 0 \\ \ldots & \ldots & \vdots & \ldots \\ 0 & 0 & \vdots & 1\end{array}\right]$
EX

(1)First translate the rotation $\mathrm{pt}(2,0)$ [the object] to $(0,0)$
(2)Then rotate $90^{\circ} \mathrm{CC}$ around origin
(3)Finally, translate $(0,0)$ back to $(2,0)$
(1) Translate 2 units left, 0 unit up

$$
a_{1}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(2) Rotate $90^{\circ} \mathrm{CC}$ around origin

$$
a_{2}=\left[\begin{array}{ccc}
\cos 90^{\circ} & -\sin 90^{\circ} & 0 \\
\sin 90^{\circ} & \cos 90^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(3) Translate 2 units right, 0 units up

$$
a_{3}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then

$$
\begin{aligned}
A & =a_{3} a_{2} a_{1} \\
& =\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right] \\
B & =\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 2 \\
1 & 1 & 1
\end{array} 1\right.
\end{array}\right] \quad \begin{aligned}
A B & =\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 & 2 & 0 & 2 \\
-2 & 0 & -2 & -2 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

