2.3 The Invertible Matrix Theorem

[SEE section 2.3; make the connections from one part to the next.]

One particular connections: the following are either both true or both false:
(a) A is invertible
(b) The columns of A are independent
$\underline{\operatorname{EX}(\mathrm{a})} \quad A=\left[\begin{array}{lll}1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0\end{array}\right]$
$\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$ contains $\overrightarrow{0}$, so the columns of
A are dependent
So A is not invertible.
(b) $B=\left[\begin{array}{lll}1 & 4 & 2 \\ 2 & 5 & 4 \\ 3 & 6 & 6\end{array}\right]$

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right\} \text { is dependent because the }
$$

$3^{\text {rd }}$ vector is a multiple of the $1^{\text {st }}$ so B is not inventible.
(c) $C=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$
C has 3 pivot columns and is a 3×3 matrix, so the columns will be dependent.

So C is invertible.

