2.2 The Inverse of a matrix

Motivation

Reclnumbers: $a X=b \Rightarrow X=\frac{b}{a}$

Slow motion: $a X=b$

Suppose a^{-1} is some number for which $a^{-1} a=1$.

$$
\begin{aligned}
a X & =b \\
a^{-1}(a X) & =a^{-1}(b) \\
\left(a^{-1} a\right) X & =a^{-1} b \\
1 X & =a^{-1} b \\
X & =a^{-1} b \rightarrow \frac{b}{a}
\end{aligned}
$$

matrices: $\quad A X=B$

Suppose A^{-1} is another matrix where $A^{-1} A=I$.

$$
\begin{aligned}
A X & =B \\
A^{-1}(A X) & =A^{-1}(B) \\
\left(A^{-1} A\right) X & =A^{-1} B \\
I X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

Definintion Suppose A is an $n \times n$ matrix (square).

If there is another $n \times n$ matrix A^{-1} such that

$$
A^{-1} A=I \quad \underline{\text { AND }} \quad A A^{-1}=I
$$

then A is called invertible with inverse A^{-1}.

If such a matric A^{-1} does not exist, then \mathbf{A} is called
not invertible or singular

How to Find $\quad A^{-1} \quad$ (if it exists)

EX (Slow motion)

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Is there a matrix $\quad A^{-1} \quad$ where $A A^{-1}=A^{-1} A=\mathbf{I}$?

$$
\left.\begin{array}{c}
A A^{-1}=I \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
\vec{C}_{1} & \vec{C}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \vec{C}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \vec{C}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 2 & \vdots & 1 \\
3 & 4 & \vdots & 0
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 2 & \vdots & 0 \\
3 & 4 & \vdots & 1
\end{array}\right]} \\
-3\left[\begin{array}{cccc}
1 & 2 & \vdots & 1
\end{array} 0\right. \\
3
\end{array}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & \vdots & -2 & 1 \\
0 & -2 & \vdots & -3 & 1
\end{array}\right] R_{2}+R_{1}} \\
& {\left[\begin{array}{ccccc}
1 & 0 & \vdots & -2 & 1 \\
0 & 1 & \vdots & \frac{3}{2} & \frac{-1}{2}
\end{array}\right] \frac{-1}{2} R_{2}} \\
& \vec{C}_{1}=\left[\begin{array}{c}
-2 \\
\frac{3}{2}
\end{array}\right] \quad \vec{C}_{1}=\left[\begin{array}{c}
1 \\
\frac{-1}{2}
\end{array}\right]
\end{aligned}
$$

So

$$
A^{-1}=\left[\begin{array}{ll}
\vec{C}_{1} & \vec{C}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}
\end{array}\right]
$$

Summary:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
{\left[\begin{array}{lllll}
1 & 2 & \vdots & 1 & 0 \\
3 & 4 & \vdots & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
A & \vdots & I
\end{array}\right]} \\
{\left[\begin{array}{ccccc}
1 & 0 & \vdots & -2 & 1 \\
0 & 1 & \vdots & \frac{3}{2} & \frac{-1}{2}
\end{array}\right]\left[\begin{array}{lll}
I & \vdots & A^{-1}
\end{array}\right]} \\
A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}
\end{array}\right]
\end{gathered}
$$

$\underline{\mathbf{E X}} \quad \mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & 1 & 1 \\ 0 & 5 & 1\end{array}\right]$
Find A^{-1} if it exists.

$$
\begin{gathered}
A A^{-1}=\mathbf{I} \\
2\left[\begin{array}{ccccccc}
1 & 2 & 0 & \mid & 1 & 0 & 0 \\
-2 & 1 & 1 & \mid & 0 & 1 & 0 \\
0 & 5 & 1 & \mid & 0 & 0 & 1
\end{array}\right] \\
-1\left[\begin{array}{lllllll}
1 & 2 & 0 & \mid & 1 & 0 & 0 \\
0 & 5 & 1 & \mid & 2 & 1 & 0 \\
0 & 5 & 1 & \mid & 0 & 0 & 1
\end{array}\right]
\end{gathered} R_{1}+R_{2} \quad\left[\begin{array}{ccccccc}
1 & 2 & 0 & \mid & 1 & 0 & 0 \\
0 & 5 & 1 & \mid & 2 & 1 & 0 \\
0 & 0 & 0 & \mid & -2 & -1 & 1
\end{array}\right]-R_{2}+R_{3}
$$

This matrix tells us that there is no matrix A^{-1} where $A A^{-1}=\mathbf{I}$.
A is not invertible (singular)

A Formula for 2×2 Matrix Inverses

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{lllll}
a & b & : & 1 & 0 \\
c & d & : & 0 & 1
\end{array}\right] \begin{array}{cccc}
-c R_{1} \\
a R_{2}
\end{array} \begin{array}{ccc}
-c a & -c b & -c \\
a c & a d & 0 \\
--- & --- & --- \\
A d d & a d-b c & -c
\end{array} \\
& {\left[\begin{array}{ccccc}
a & b & \vdots & 1 & 0 \\
0 & a d-b c & \vdots & -c & a
\end{array}\right]}
\end{aligned}
$$

For A^{-1} to exist, we need $a d-b c \neq 0$

$$
\left[\begin{array}{ccccc}
a & b & \vdots & 1 & 0 \\
0 & 1 & \vdots & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

\Downarrow One more step to row reduce

$$
\left[\begin{array}{ccccc}
1 & 0 & \vdots & \frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
0 & 1 & \vdots & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{ll}
\frac{d}{a d-b b} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

OR

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]
$$

(1) Reverse diagonal entries
(2) Change sign of the nondiagonal entries
(3) Multiple by $\frac{1}{a d-b c}$
$\underline{\text { OR }} \quad A=\left[\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right]$
$\operatorname{det}(A)=a d-b c=(1)(6)-(2)(2)=2$
$A^{-1}=\frac{1}{2}\left[\begin{array}{rr}6 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}3 & -1 \\ -1 & \frac{1}{2}\end{array}\right]$

Using A^{-1} to Solve $A \vec{X}=\vec{b}$

EX

$$
\begin{aligned}
& X_{1}+3 X_{2}=1 \\
& 2 X_{1}+4 X_{2}=6 \\
& {\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] } {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right] } \\
&\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] } \\
&=\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]\right)^{-1} \quad\left[\begin{array}{l}
1 \\
6
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] } \\
&=\frac{1}{(1)(4)-(2)(3)}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right] {\left[\begin{array}{l}
1 \\
6
\end{array}\right] } \\
& {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{c}
-14 \\
4
\end{array}\right] \quad=} {\left.\left[\begin{array}{c}
7 \\
-2
\end{array}\right]\right) }
\end{aligned}
$$

The soln. $\quad X_{1}=7, X_{2}=-2$
(1) If A is invertible, then $A \vec{X}=\vec{b}$ is consistent with exactly one solution .

$$
\vec{X}=A^{-1} \vec{b}
$$

(2) If A is invertible with inverse A^{-1}, then A^{-1} is also invertible $\left(A^{-1}\right)^{-1}=A$

$$
A A^{-1}=I
$$

A^{-1} is the inverse of \mathbf{A}
A is the inverse of A^{-1}
(3) If \mathbf{A}, B are two invertible $n \times n$ matrices, then $A B$ is another invertible matrix with

$$
\begin{aligned}
(A B)^{-1} & =B^{-1} A^{-1} \\
(A B)(?) & =I \\
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} \\
& =A(I) A^{-1} \\
& =A A^{-1} \\
& =I
\end{aligned}
$$

$$
\begin{aligned}
(?)(A B) & =I \\
\left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B \\
& =B^{-1}(I) B \\
& =B^{-1} B \\
& =I
\end{aligned}
$$

So:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(4) If A is invertible, then so is A^{T} and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ Check:

$$
\begin{aligned}
A^{T}\left(A^{-1}\right)^{T} & =\left(A^{-1} A\right)^{T} \\
& =(I)^{T} \\
& =I \\
\left(A^{-1}\right)^{T} A^{T} & =\left(A A^{-1}\right)^{T}=(I)^{T}=I
\end{aligned}
$$

Page. of transpose $(A B)^{T}=B^{T} A^{T}$

