1.9 Linear + Matrix Transformations

A transformation $\mathrm{T}: \Re^{n} \rightarrow \Re^{m}$ is called linear if
(a) $T(\vec{U}+\vec{V})=T(\vec{U})+T(\vec{V})$
(b) $T(C \vec{U})=C T(\vec{U})$
for all \vec{U}, \vec{V} in the domain of \mathbf{T} and all scalars \mathbf{C}.

Note
(1)

$$
\begin{aligned}
T(\overrightarrow{0})= & \overrightarrow{0} \\
T(\overrightarrow{0})= & T(0 . \overrightarrow{0})=0 T(\overrightarrow{0})=\overrightarrow{0} \\
& \uparrow \\
& \text { Scalars }
\end{aligned}
$$

(2)

$$
\begin{aligned}
T(C \vec{U}+D \vec{V}) & =T(C \vec{U})+T(D \vec{V}) \\
& =C T(\vec{U})+D T(\vec{V})
\end{aligned}
$$

Representing Linear Transformations as $T(\vec{X})=A \vec{X}$

EX T : $\Re^{2} \rightarrow \Re^{3}$ by
$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$
(a) $T\left(\left[\begin{array}{c}10 \\ -3\end{array}\right]\right)=$?

$$
\begin{aligned}
T\left(\left[\begin{array}{c}
10 \\
-3
\end{array}\right]\right) & =T\left(\underline{10}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(\underline{-3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =10 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+(-3) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =10\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+(-3)\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
5 \\
12
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
T\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\right) & =? \\
T\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\right) & =T\left(X_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(X_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =X_{1} T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+X_{2} T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =X_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
\nearrow & \left.\left.\begin{array}{l}
\nearrow \\
T
\end{array}\right]\right) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
\end{aligned}
$$

EX $\mathrm{T}: \Re^{2} \rightarrow \Re^{2}$ that takes each \vec{X} in \Re^{2} and rotates it 30° counter-clockwise around (0,0). Find a matrix A so that $T(\vec{X})=A \vec{X}$

$$
A=\left[T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right] \text { see last example }
$$

$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right):$

$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{array}\right]$

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right):
$$

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{-1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right]
$$

$$
\text { so } \quad T\left(\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Rotate each corner 30°

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=A\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}}{2} \\
\frac{-1}{2}
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}}{2} \\
\frac{-1}{2} \\
\frac{1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{-1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right) \\
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left(\left[\begin{array}{l}
.86 \\
.50
\end{array}\right]\right) \\
& T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left(\left[\begin{array}{c}
.37 \\
1.36
\end{array}\right]\right) \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left(\left[\begin{array}{c}
-.50 \\
.86
\end{array}\right]\right)
\end{aligned}
$$

Geometric Transformations $T: \Re^{2} \rightarrow \Re^{2}$
(1) Rotation counterclockwise θ

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

(2) Reflection across a line through origin

EX Reflect across X_{1}-axis

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(3) Vertical + Horizontal Scalings
(4) Projection onto a line
(5) Shear

