1.7 Linear Independence

Preliminary Idea

Start with one nonzero vector in \Re^{2}

Add another vector:

$\vec{U} \neq C \vec{V}$

$$
\begin{aligned}
& \vec{U}=C \vec{V} \\
& 1 \times \vec{U}-C \vec{V}=0 \\
& {\left[\begin{array}{cc}
\vec{U} & \vec{V}
\end{array}\right]\left[\begin{array}{c}
1 \\
-C
\end{array}\right] }=\overrightarrow{0} \\
& A \quad \vec{X}
\end{aligned}
$$

$A \vec{X}=\overrightarrow{0}$ has a nontrivial solution \vec{X}.

A careful study of $A \vec{X}=\overrightarrow{0}$

$$
\begin{aligned}
& A \vec{X}=\overrightarrow{0} \\
& {\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \cdots & \overrightarrow{a_{n}}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]} \\
& X_{1} \overrightarrow{a_{1}}+\ldots+X_{n} \overrightarrow{a_{n}}=\overrightarrow{0}
\end{aligned}
$$

One set of weights for this equation is :
$X_{1}=0, \ldots, X_{n}=0$

Main issue: are there nontrivial weights ?

If so, one vector $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{n}}$ is a linear combination of the others.

Definition A set of vectors $\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{p}\right\}$ in \Re^{n} is called linearly independent if:

$$
X_{1} \vec{V}_{1}+X_{2} \overrightarrow{V_{2}}+\ldots X_{p} \overrightarrow{V_{p}}=\overrightarrow{0}
$$

has only the trivial solutions $X_{1}=0, X_{2}=0, \ldots, X_{p}=0$.

If there are nontrivial solutions, the vectors are called linearly dependent.
$\underline{\mathbf{E X}}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]\right\}$
First, write the "important" starting equation :

$$
X_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+X_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

solve to determine if $X_{1}=0, X_{2}=0$ is the only solution or not.
(a) $\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 6 & 0\end{array}\right] \sim\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]-2 R_{1}+R_{2}$

$$
\begin{array}{rc}
X_{1}+3 X_{2} & =0 \\
X_{2} & \\
\text { free }
\end{array}
$$

Since X_{2} is a free variable, it does not have to be 0 .
So the vector equation will the solutions other than $(0,0)$.
The vectors are dependent.
(b)OR, $X_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]+X_{2}\left[\begin{array}{l}3 \\ 6\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

By inspection
$-3\left[\begin{array}{l}1 \\ 2\end{array}\right]+1\left[\begin{array}{l}3 \\ 6\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

So the vectors are dependent as before. (c)OR,

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
6
\end{array}\right]} \\
{\left[\begin{array}{l}
3 \\
6
\end{array}\right]=3\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
-3\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

So $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]$ are dependent as before
$\underline{\mathbf{E X}}\left\{\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{r}-3 \\ -5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 6\end{array}\right]\right\}$
$X_{1}\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right]+X_{2}\left[\begin{array}{r}-3 \\ -5 \\ 6\end{array}\right]+X_{3}\left[\begin{array}{l}0 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{rrrr}
1 & -3 & 0 & 0 \\
3 & -5 & 5 & 0 \\
-2 & 6 & 6 & 0
\end{array}\right] \backsim \ldots \backsim\left[\begin{array}{rrrr}
(1) & -3 & 0 & 0 \\
0 & (4) & 5 & 0 \\
0 & 0 & (6) & 0
\end{array}\right] \text { Ech. Form }
$$

No free variables, $X_{1}=0, X_{2}=0, X_{3}=0$ is the only solution of the important vector eq.

The vector are independent.

