### 1.5 Vector Form of Solution Sets

Ex: (a) $X_{1}+2 X_{2}=0$
$2 X_{1}+4 X_{2}=0$

- Right sides are all 0; homogeneous system
- Consistent ; $\left(X_{1}, X_{2}\right)=(0,0)$ is a solution.

Are there nontrivial solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right] \backsim\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]-2 R_{1}+R_{2}} \\
& X_{1}+\quad 2 X_{2}=0 \\
& \left(0 X_{2}=0\right) \quad X_{2} \text { free }
\end{aligned}
$$

The solutions are
$X_{1}=-2 X_{2}$,
$X_{2}$ free

In vector form (parametric vector form)
$\vec{X}=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{r}-2 X_{2} \\ X_{2}\end{array}\right]=X_{2}\left[\begin{array}{r}-2 \\ 1\end{array}\right]$
(Note: Solution set=Span $\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ ).
(b) $\begin{aligned} X_{1}+2 X_{2} & =3 \\ 2 X_{1}+4 X_{2} & =6\end{aligned}$

- Right sides are all 0 ; nonhomogeneous system
- Consistent is harder to determine by inspection.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right] \backsim\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right]-2 R_{1}+R_{2}
$$

## The solutions are:

$$
\begin{array}{rlll}
X_{1}+2 X_{2} & =3 \\
X_{2} & \text { free } & \Rightarrow & X_{1}=3-2 X_{2} \\
X_{2} \quad \text { free }
\end{array}
$$

In Parametric vector form.

$$
\begin{align*}
& \vec{X}=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{r}
3-2 X_{2} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\left[\begin{array}{r}
-2 X_{2} \\
X_{2}
\end{array}\right] \\
& \vec{X}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+X_{2}\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \\
& \quad(1) \tag{2}
\end{align*}
$$

(1): A particular solution of the nonhom system
(2): The solution of the associated homogeneous system

