1.3 Vectors + Vector Equations

<u>Vectors \Re^n </u>

• A <u>vector</u> is a matrix with one column

$$\begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} X_1\\X_2\\\vdots\\X_n \end{bmatrix}$$

- Vectors notations: \vec{a}, \vec{u}, \dots
- \Re : all real numbers

$$\Re^2$$
: all real vectors $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ with 2 rows
 \Re^3 : all real vectors $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$ with 3 rows

 \Re^n : all real vectors with n rows

Vector Algebra

. $\vec{u} = \vec{v} \ \vec{u}, \vec{v}$ have the same number of rows

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \quad and \quad u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$$

$$\begin{array}{c} \vec{u} + \vec{v} : \\ \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

. $\mathbf{c}\vec{u}$:

$$(-2)\begin{bmatrix}1\\3\\5\end{bmatrix} = \begin{bmatrix}-2\\-6\\-10\end{bmatrix}$$

. $\vec{0}$ (zero vector):

$$\left[\begin{array}{c} 0\\ \vdots\\ 0\end{array}\right]$$

Geometric Interpretation

Vectors are represented by arrows

Scalar multiple of \vec{u} lie along the same line as \vec{u}

Adding two vectors \vec{u}, \vec{v}

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ $\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$

Parallel diagram Law:

Create a parallel diagram using \vec{u}, \vec{v} as sides.

Tip-To-Tail:

Combinations of Vectors using Addition + Substraction

$$2\vec{u} + \vec{v}:$$
$$\frac{1}{2}\vec{u} - \vec{v}:$$

<u>Linear Combinations</u> (Creating new vectors from old vectors)

A <u>linear combination</u> of vectors $\vec{v_1}, \vec{v_2}, ... \vec{v_p}$ with scalar weights $c_1, c_2, ..., c_p$ is the vector:

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_p \vec{v_p}$$

<u>Ex:</u>

$$\vec{V_1} = \begin{bmatrix} 1\\2 \end{bmatrix} \quad \vec{V_2} = \begin{bmatrix} -1\\1 \end{bmatrix}$$

• (a) Find 3 different linear combinations of $\vec{V_1}$ and $\vec{V_2}$.

$$C_{1}\vec{V_{1}} + C_{2}\vec{V_{2}}$$

$$\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 0\\-1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

$$\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 0\\3 \end{bmatrix}$$

$$\begin{bmatrix} 2\\1\\2 \end{bmatrix} + \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} -2\\8 \end{bmatrix}$$

• (b) Is
$$\begin{bmatrix} 4\\5 \end{bmatrix}$$
 a linear combination of $\vec{V_1}, \vec{V_2}$?

$$C_1 \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$$

$$\begin{bmatrix} C_1\\2C_1 \end{bmatrix} + \begin{bmatrix} -C_2\\C_2 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$$

$$\begin{bmatrix} C_1 - C_2\\2C_1 + C_2 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$$

$$C_1 - C_2 = 4$$

$$2C_1 + C_2 = 5$$

$$-2 \begin{bmatrix} 1 & -1 & 4\\2 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 4\\0 & 3 & -3 \end{bmatrix} -2R_1 + R_2$$

This echelon form matrix represents a consistent system of equations. So C_1, C_2 exist so that

$$C_1 \vec{V_1} + C_2 \vec{V_2} = \begin{bmatrix} 4\\5 \end{bmatrix}$$

So yes, $\begin{bmatrix} 4\\5 \end{bmatrix}$ is a combination of $\vec{V_1}, \vec{V_2}$.

 $\underline{\mathbf{Ex:}}$

X_1	+	$3X_2$	=	7	Linear	System
$2X_1$	_	$5X_2$	=	0	Lincur	

 $\begin{bmatrix} X_1 + 3X_2 \\ 2X_1 - 5X_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$ $\begin{bmatrix} X_1 \\ 2X_1 \end{bmatrix} + \begin{bmatrix} 3X_2 \\ -5X_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$ $X_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + X_2 \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$ Vector Equation

Linear systems can be converted to a vector equation, and vise-versa.

Generating Sets of Vectors (Span)

<u>Ex:</u> $\vec{V} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Using \vec{V} , we can generate other vectors by multiplying \vec{V} by scalars:

All multiples of \vec{V} lie along this lines

the multiples of \vec{V} generate this line. called the span of \vec{V} , or span $\{\vec{V}\}$ for short.

<u>Ex</u>: $\vec{V} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. But if \vec{V} is the zero vector, the multiples of \vec{V} are still $\vec{0}$.

The multiples of \vec{V} generate only this one point,

The span $\{\vec{V}\}$ is the origin.

Ex:
$$\vec{V_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{V_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Every vector in \Re^2 is the sum of a vector $C_1 \vec{V_1}$ and a vector $C_2 \vec{V_2}$

The combinations $C_1 \vec{V_1} + C_2 \vec{V_2}$ now generate all points in the plane. Here, Span $\{\vec{V_1}, \vec{V_2}\} = \Re^2$

<u>Ex</u>: $\vec{V_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{V_2} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. But here, $\vec{V_1}$ and $\vec{V_2}$ lie along the same line. Combinations of $\vec{V_1}$ and $\vec{V_2}$ just generale move vectors along the same line.

 $\mathbf{Span}\{\vec{V_1},\vec{V_2}\}$ is a line through origin.

<u>Ex:</u> In \Re^2 , we saw that the span of vectors may generate a point, a line through the origin, or all of the plane \Re^2 .

In \Re^3 , the multiples $\vec{0}$, Span $\{\vec{0}\}$ is the origin (a point):

If \vec{V} is not $\vec{0}$, the multiples \vec{V} , span $\{\vec{V}\}$, form a line through the origin:

If \vec{U}, \vec{V} are nonzero vectors that don't lie along the same line, the combinations \vec{U}, \vec{V} , $\text{Span}\{\vec{U}, \vec{V}\}$ form a plane through the origin:

If $\vec{U}, \vec{V}, \vec{W}$, are 3 vectors in <u>different directions</u>, span{ $\vec{U}, \vec{V}, \vec{W}$ } is <u>all</u> of \Re^3 :

A.

$$\underline{\mathbf{Ex:}} \qquad \mathbf{Is} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \mathbf{in \ Span} \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right\}? \\
\mathbf{Is} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \mathbf{a \ combination \ of} \left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right)? \\
C_1 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + C_2 \begin{bmatrix} -1\\1\\2 \end{bmatrix}^2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

(Check to see if weights C_1, C_2 exist by reducing an appropriate augmented matrix to echelon form.)