1.3 Vectors + Vector Equations

Vectors \Re^{n}

- A vector is a matrix with one column

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]
$$

- Vectors notations: \vec{a}, \vec{u}, \ldots
- \Re : all real numbers
$\Re^{2}:$ all real vectors $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ with 2 rows
$\Re^{3}:$ all real vectors $\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]$ with 3 rows
\Re^{n} : all real vectors with n rows

$\underline{\text { Vector Algebra }}$

. $\vec{u}=\vec{v} \vec{u}, \vec{v}$ have the same number of rows
$\vec{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$, and $u_{1}=v_{1}, u_{2}=v_{2}, \ldots, u_{n}=v_{n}$

- $\vec{u}+\vec{v}$:

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
$$

. $\mathbf{c} \vec{u}$:

$$
(-2)\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-6 \\
-10
\end{array}\right]
$$

. $\overrightarrow{0}$ (zero vector):

$$
\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Geometric Interpretation

Vectors are represented by arrows

$$
\vec{X}=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]:
$$

$$
\vec{X}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]:
$$

Ex: In $\quad R^{2}$

Scalar multiple of \vec{u} lie along the same line as \vec{u}

Adding two vectors \vec{u}, \vec{v}

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{u}+\vec{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Parallel diagram Law:

Create a parallel diagram using \vec{u}, \vec{v} as sides.

Tip-To-Tail:

Combinations of Vectors using Addition + Substraction

$$
\begin{aligned}
& 2 \vec{u}+\vec{v}: \\
& \frac{1}{2} \vec{u}-\vec{v}:
\end{aligned}
$$

EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$. Express each of the following as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
\mathbf{a}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-4 \\
1
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
6 \\
6
\end{array}\right], \mathbf{d}=\left[\begin{array}{r}
7 \\
-4
\end{array}\right]
$$

Linear Combinations (Creating new vectors from old vectors)

A linear combination of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{p}}$ with scalar weights $c_{1}, c_{2}, \ldots, c_{p}$ is the vector:

$$
c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{p} \overrightarrow{v_{p}}
$$

Ex:

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \vec{V}_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

- (a) Find 3 different linear combinations of \vec{V}_{1} and $\overrightarrow{V_{2}}$.

$$
\begin{gathered}
C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2} \\
0\left[\begin{array}{l}
1 \\
2
\end{array}\right]+0\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+4\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-2 \\
8
\end{array}\right]
\end{gathered}
$$

- (b) Is $\left[\begin{array}{l}4 \\ 5\end{array}\right]$ a linear combination of $\vec{V}_{1}, \overrightarrow{V_{2}}$?

$$
\begin{gathered}
C_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right] \\
{\left[\begin{array}{r}
C_{1} \\
2 C_{1}
\end{array}\right]+\left[\begin{array}{r}
-C_{2} \\
C_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]} \\
{\left[\begin{array}{l}
C_{1}-C_{2} \\
2 C_{1}+C_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]} \\
C_{1}-C_{2}=4 \\
2 C_{1}+C_{2}=5 \\
-2\left[\begin{array}{rrr}
1 & -1 & 4 \\
2 & 1 & 5
\end{array}\right] \sim\left[\begin{array}{lll}
1 & -1 & 4 \\
0 & 3 & -3
\end{array}\right]-2 R_{1}+R_{2} \\
\underline{\left(3 C_{2}=-3\right)}
\end{gathered}
$$

This echelon form matrix represents a consistent system of equations. So C_{1}, C_{2} exist so that $C_{1} \overrightarrow{V_{1}}+C_{2} \overrightarrow{V_{2}}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
So yes, $\left[\begin{array}{l}4 \\ 5\end{array}\right]$ is a combination of \vec{V}_{1}, \vec{V}_{2}.

$\underline{\text { Vector Equations + Linear Systems }}$

Ex:

$$
\left.\left.\begin{array}{c}
X_{1}+3 X_{2}=7 \\
2 X_{1}-5 X_{2}=0
\end{array} \quad \text { Linear System } \quad \begin{array}{r}
X_{1}+3 X_{2} \\
2 X_{1}-5 X_{2}
\end{array}\right]=\left[\begin{array}{l}
7 \\
0
\end{array}\right] \quad \begin{array}{r}
X_{1} \\
2 X_{1}
\end{array}\right]+\left[\begin{array}{r}
3 X_{2} \\
-5 X_{2}
\end{array}\right]=\left[\begin{array}{l}
7 \\
0
\end{array}\right]
$$

Linear systems can be converted to a vector equation, and vise-versa.

Generating Sets of Vectors (Span)

Ex: $\vec{V}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Using \vec{V}, we can generate other vectors by multiplying \vec{V} by scalars:

All multiples of \vec{V} lie along this lines

the multiples of \vec{V} generate this line. called the span of \vec{V}, or span $\{\vec{V}\}$ for short.

Ex: $\vec{V}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. But if \vec{V} is the zero vector, the multiples of \vec{V} are still $\overrightarrow{0}$.

The multiples of \vec{V} generate only this one point, The span $\{\vec{V}\}$ is the origin.

Ex: $\quad \vec{V}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \overrightarrow{V_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Every vector in \Re^{2} is the sum of a vector $C_{1} \overrightarrow{V_{1}}$ and a vector $C_{2} \overrightarrow{V_{2}}$

The combinations $C_{1} \vec{V}_{1}+C_{2} \overrightarrow{V_{2}}$ now generate all points in the plane. Here, Span $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}=\Re^{2}$

Ex: $\vec{V}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \overrightarrow{V_{2}}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$. But here, \vec{V}_{1} and \vec{V}_{2} lie along the same line. Combinations of \vec{V}_{1} and \vec{V}_{2} just generale move vectors along the same line.

$$
\operatorname{Span}\left\{\overrightarrow{V_{1}}, \overrightarrow{V_{2}}\right\} \text { is a line through origin. }
$$

Ex: In \Re^{2}, we saw that the span of vectors may generate a point, a line through the origin, or all of the plane \Re^{2}.

In \Re^{3}, the multiples $\overrightarrow{0}$, Span $\{\overrightarrow{0}\}$ is the origin (a point):

If \vec{V} is not $\overrightarrow{0}$, the multiples $\vec{V}, \operatorname{span}\{\vec{V}\}$, form a line through the origin:

If \vec{U}, \vec{V} are nonzero vectors that don't lie along the same line, the combinations $\vec{U}, \vec{V}, \operatorname{Span}\{\vec{U}, \vec{V}\}$ form a plane through the origin:

If $\vec{U}, \vec{V}, \vec{W}$, are 3 vectors in different directions, $\operatorname{span}\{\vec{U}, \vec{V}, \vec{W}\}$ is all of \Re^{3} :

Ex:

$$
\begin{gathered}
\text { Is }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { in Span }\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]\right\} ? \\
\text { Is }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { a combination of }\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]\right) ? \\
C_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{gathered}
$$

(Check to see if weights C_{1}, C_{2} exist by reducing an appropriate augmented matrix to echelon form.)

