1.2 Row Reduction + Echelon Form

The Three Basic Row Operations

1. Interchange two rows
2. Multiply a row by a nonzero number
3. Add a multiple of one row to another row

Goal: Use the row operations to simplify a system of equations in order to easily see the solution.

Ex

$$
\begin{aligned}
X_{1}-2 X_{2}+X_{3}= & 0 \\
2 X_{2}-8 X_{3}= & 8 \\
-4 X_{1}+5 X_{2}+9 X_{3} & =-9
\end{aligned}
$$

Leading Entries: $1^{\text {st }}$ nonzero number in a row

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
(1) & -2 & 1 & 0 \\
0 & (2) & -8 & 8 \\
(-4) & 5 & 9 & -9
\end{array}\right] \text { Augmented matrix for original }} \\
& \text { system }
\end{aligned}
$$

$$
\left[\begin{array}{ccc|c}
(1) & -2 & 1 & 0 \\
0 & (1) & -9 & 4 \\
0 & 0 & (2) & 6
\end{array}\right] \text { Represents a "simpler" system }
$$

$$
\left[\begin{array}{ccc|c}
(1) & 0 & 0 & 29 \\
0 & (1) & 0 & 16 \\
0 & 0 & (1) & 3
\end{array}\right] \text { Represents the "simplest" system }
$$

Definition of Echelon Form of a Matrix

A matrix is in echelon form if

1. All nonzero rows are above any row of all zeros.
$\left[\begin{array}{ll}0 & 0 \\ 1 & 2\end{array}\right]$ no $\quad\left[\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right]$ yes
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
$\left[\begin{array}{cc}0 & (1) \\ (2) & 3\end{array}\right]$ no $\quad\left[\begin{array}{cc}(2) & 3 \\ 0 & (1)\end{array}\right] \leftarrow$ yes
3. All entries in a column below a leading entry are zero.
$\left.\begin{array}{c}\text { No } \\ -3\end{array} \begin{array}{cc}(1) & 2 \\ (3) & 4\end{array}\right] \quad \sim\left[\begin{array}{cc}(1) & 2 \\ 0 & (-2)\end{array}\right] \begin{gathered} \\ -3 R_{1}+R_{2}\end{gathered}$

A matrix is in reduced echelon form if it is in echelon form and
4. Each leading entry is 1 .

$$
\begin{gathered}
\text { No } \\
{\left[\begin{array}{ccc}
(2) & 1 & 1 \\
0 & (3) & 9
\end{array}\right] \sim\left[\begin{array}{ccc}
\text { Yes } \\
(1) & 1 / 2 & 1 / 2 \\
0 & (1) & 3
\end{array}\right] \begin{array}{c}
\\
1 / 2 R_{1} \\
1 / 3 R_{3}
\end{array}}
\end{gathered}
$$

5. All leading entries in a column above a leading entry are zero.
$-2\left[\begin{array}{ccc}(1) & 2 & 1 \\ 0 & (1) & 4\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 0 & -7 \\ 0 & (1) & 4\end{array}\right] \quad-2 R_{2}+R_{1}$

Ex:

$$
\begin{aligned}
&-1 {\left[\begin{array}{cccc}
(2) & -2 & -2 & 12 \\
0 & (1) & -4 & 8 \\
(2) & -1 & -6 & 20
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
(2) & -2 & -2 & 12 \\
0 & (1) & -4 & 8 \\
0 & (1) & -4 & 8
\end{array}\right] \quad-R_{1}+R_{3} } \\
& {\left[\begin{array}{cccc}
(2) & -2 & -2 & 12 \\
0 & (1) & -4 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \quad-R_{2}+R_{3} } \\
& {\left[\begin{array}{cccc}
2 & 0 & -10 & 28 \\
0 & 1 & -4 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \quad 2 R_{2}+R_{1} } \\
& {\left[\begin{array}{cccc}
1 & 0 & -5 & 14 \\
0 & 1 & -4 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \quad 1 / 2 R_{1} } \\
& \text { Form Reducelon Form } \\
&
\end{aligned}
$$

If this was a system of equations the solution would be:

$$
\begin{aligned}
X_{1}-5 X_{3} & =14 & X_{1} & =14+5 X_{3} \\
X_{2}-4 X_{3} & =8 & X_{2} & =8+4 X_{3} \\
0 X_{3} & =0 & X_{3} & =\text { any }(\text { free })
\end{aligned}
$$

