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In this paper, we study all possible traveling wave solutions of an integrable system with both
quadratic and cubic nonlinearities: mt = bux + 1

2k1[m(u2 − u2
x)]x + 1

2k2(2mux + mxu), m =
u− uxx, where b, k1 and k2 are arbitrary constants. We call this model a generalized Camassa–
Holm equation since it is kind of a cubic generalization of the Camassa–Holm (CH) equation:
mt +mxu+2mux = 0. In the paper, we show that the traveling wave system of this generalized
Camassa–Holm equation is actually a singular dynamical system of the second class. We apply
the method of dynamical systems to analyze the dynamical behavior of the traveling wave
solutions and their bifurcations depending on the parameters of the system. Some exact solutions
such as smooth soliton solutions, kink and anti-kink wave solutions, M-shape and W-shape wave
profiles of the breaking wave solutions are obtained. To guarantee the existence of those solutions,
some constraint parameter conditions are given.

Keywords : Generalized Camassa–Holm equation; soliton solution; kink and anti-kink wave
solutions; breaking wave solution; bifurcation.

1. Introduction

The Camassa–Holm (CH) equation

mt − bux + 2mux +mxu = 0, m = u− uxx, (1)

was derived in [Camassa & Holm, 1993] as a shallow
water wave model. In recent years, this equation
has attracted much attention in the studies of

soliton theory. In the literature, this equation was
derived from [Fuchssteiner & Fokas, 1981] on hered-
itary symmetries as a very special case. However,
since the work of [Camassa et al., 1994], vari-
ous studies on this equation have been developed.
The CH equation possesses many important inte-
grable properties. For instance, it admits the Lax

∗The authors are supported by the National Natural Science Foundation of China (10831003).
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representation, bi-Hamiltonian structures, multi-
soliton solutions, and algebraic-geometric solutions
(see [Camassa et al., 1994; Olver & Rosenau, 1996]).
Also, it is integrable by the inverse scattering
transformation [Constantin et al., 2007]. The most
remarkable feature of the CH equation is having
peaked soliton (peakon) solutions in the case of
b = 0. A peakon is a weak solution in some Sobolev
space with corner at its crest.

In addition to the CH equation being an
integrable model that admits the peakon solu-
tions, other integrable peakon models have been
found. Those integrable peakon models include the
Degasperis–Procesi equation, among others (see
[Li & Chen, 2007; Li & Dai, 2007; Li et al., 2006;
Li & Qiao, 2010] and cited references therein).

The present paper focuses on the following
equation with both quadratic and cubic non-
linearities:

mt = bux +
1
2
k1[m(u2 − u2

x)]x

+
1
2
k2(2mux +mxu), m = u− uxx, (2)

where b, k1 and k2 are three arbitrary constants. It
is clear that Eq. (2) reduces to the CH equation (1)
when k1 = 0, k2 = −2. For k1 = −2, k2 = 0, Eq. (2)
is exactly the cubic nonlinear equation:

mt − bux + [m(u2 − u2
x)]x = 0, m = u− uxx,

(3)

which was derived independently by Fokas [1995],
Fuchssteiner [1996], Olver and Rosenau [1996], Qiao
[2006], where the equation was derived from the
two-dimensional Euler system, for which the Lax
pair, the M/W-shape solitons and cuspon solutions

were presented in [Qiao, 2006, 2007; Qiao & Li,
2011].

Equation (2) is actually a linear combination
of the CH equation (1) and cubic nonlinear equa-
tion (3). Therefore, we may view Eq. (2) as a gen-
eralization of the CH equation, so we simply call
it a generalized CH equation. This structure is very
similar to the one in dealing with the Gardner equa-
tion, known as a linear combination of the KdV
and mKdV equations, which has important appli-
cations in various areas of physics (see [Desanto,
1998]). In fact, the structure of the Gardner equa-
tion is our starting point to study Eq. (2). We also
notice that by some appropriate rescaling, Eq. (2)
might implicitly be derived from [Fokas, 1995;
Fuchssteiner, 1996] in the context of hereditary
symmetries.

In this paper, we study the dynamical behavior
of all traveling wave solutions of (2) and our objec-
tive is to find possible exact parametric representa-
tions of the bounded traveling wave solutions of (2).
For this purpose, let u(x, t) = φ(x − ct) = φ(ξ),
where c is the wave speed. Substituting it into
Eq. (2), integrating the obtained equation once and
setting the integration constant as 0, we have

φ′′
(
c+

1
2
k2φ+

1
2
k1φ

2 − 1
2
k1(φ′)2

)

=
(

(b+ c)φ+
3
4
k2φ

2 +
1
2
k1φ

3

)

−
(

1
4
k2 +

1
2
k1φ

)
(φ′)2, (4)

where “′” stands for the derivative with respect
to ξ.

Equation (4) is equivalent to the following two-
dimensional system:

dφ

dξ
= y,

dy

dξ
=

−
(

1
4
k2 +

1
2
k1φ

)
y2 + φ

(
(b+ c) +

3
4
k2φ+

1
2
k1φ

2

)

c+
1
2
k2φ+

1
2
k1φ

2 − 1
2
k1y

2
, (5)

which has the first integral

H(φ, y) =
1
2
y2

(
c+

1
2
k2φ+

1
2
k1φ

2

)
− 1

8
k1y

4 −
(

(b+ c)φ2 +
1
4
k2φ

3 +
1
8
k1φ

4

)
= h. (6)

Without loss of generality, we assume that the wave speed c (> 0) is given. Then, system (5) is a
three-parameter planar dynamical system depending on the parameter group (b, k1, k2). We attempt to
investigate all possible phase portraits of (5) in the phase plane (φ, y) when the parameter group (b, k1, k2)
is varied. We only discuss the bounded solutions of system (5).
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Notice that for k1 �= 0, the right-hand side
of the second equation of (5) is not continuous on
the hyperbola c + 1

2k2φ + 1
2k1φ

2 − 1
2k1y

2 = 0, i.e.

(φ + k2
2k1

)2 − y2 = k2
2−8k1c

4k2
1

≡ R. In fact, along
this curve in the phase plane (φ, y), φ′′ξ is not well
defined. Therefore, this class of systems is called the
second class of singular traveling wave systems by
[Li et al., 2010].

This paper is organized as follows. In Sec. 2,
we discuss the bifurcations of phase portraits of
system (5) under different parameter conditions.
In Sec. 3, we find all explicit parametric repre-
sentations for solitary wave solutions, kink wave
solutions, M-shape type and W-shape type breaking
wave solutions as well as two-peak wave solutions of
Eq. (3), when the phase portraits of (5) are symmet-
ric. In Sec. 4, as an example, we derive the explicit
parametric representations of the M -shape type of
breaking wave solutions of Eq. (2), when the phase
portraits of (5) are nonsymmetric.

2. Bifurcations of Phase Portraits
of (5)

We assume that c > 0, k1 �= 0. Imposing the trans-
formation dξ = (c + 1

2k2φ + 1
2k1φ

2 − 1
2k1y

2)dζ for
c + 1

2k2φ + 1
2k1φ

2 − 1
2k1y

2 �= 0 on system (5) leads
to the following cubic system:

dφ

dζ
= y

(
c+

1
2
k2φ+

1
2
k1φ

2 − 1
2
k1y

2

)
,

dy

dζ
= −

(
1
4
k2 +

1
2
k1φ

)
y2

+ φ

(
(b+ c) +

3
4
k2φ+

1
2
k1φ

2

)
.

(7)

Making the transformation φ = ϕ − k2
2k1
, η =

k1
2 ζ, systems (5) and (7) become respectively the
following:

dϕ

dξ
= y,

dy

dξ
=

−ϕy2 + ϕ3 +Aϕ+B

(ϕ2 − y2 −R)

(5a)

and

dϕ

dη
= y(ϕ2 − y2 −R),

dy

dη
= −ϕy2 + ϕ3 +Aϕ+B

= −ϕy2 +
(
ϕ− k2

2k1

)

×
(
ϕ2 +

k2

2k1
ϕ+

4k1(b+ c) − k2
2

2k2
1

)
,

(8)

where A = 8k1(b+c)−3k2
2

4k2
1

, B = k2(k2
2−4k1(b+c))

4k3
1

, R =
k2
2−8k1c

4k2
1

. Correspondingly, the first integral (6)
becomes

H1(ϕ, y) = −1
4
(ϕ2 − y2)2

− 1
2
Aϕ2 − 1

2
Ry2 −Bϕ = h. (9)

Thus, we have

y2 = (ϕ2 −R)

±
√

(R2 − 4h) − 4Bϕ− 2(A+R)ϕ2. (10)

We now consider the equilibrium points of (8).
Write ∆ = 9k2

2 − 32k1(b+ c). Clearly, when ∆ > 0,
in the ϕ-axis, Eq. (8) has three equilibrium points
E0(ϕ0, 0), E1,2(ϕ1,2, 0), where ϕ0 = k2

2k1
, ϕ1,2 =

1
4k1

[−k2 ∓
√

∆]. When ∆1 = k2
2(c− 2b) + 8k1b

2 > 0
and k2

2 − 4bk1 �= 0, on the hyperbola ϕ2 − y2 = R,
(8) has two equilibrium points S1,2(ϕs, Y±), where

ϕs = k2[k2
2−4k1(b+c)]

2k1[k2
2−4bk1]

, Y± = ± 2
√

c∆1

|k2
2−4bk1| .

Let M(ϕj , 0) be the coefficient matrix of the
linearized system of (6) at an equilibrium point
Ej(ϕj , 0). We have

J(ϕj , 0) = detM(ϕj , 0)

= (R − ϕ2
j)(3ϕ

2
j +A).

J(ϕs, Y±) = detM(ϕs, Y±)

= 2Y 2
±[ϕ2

s − 2ϕs + 2R +A].

By the theory of planar dynamical systems, for
an equilibrium point of a planar integrable system,
if J < 0, then the equilibrium point is a saddle
point; if J > 0, then it is a center point; if J = 0
and the Poincaré index of the equilibrium point is
0, then this equilibrium point is a cusp (see [Li &
Dai, 2007]).
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For notational convenience, denote

h0 = H1(ϕ0, 0) =
k2

2

64k4
1

[−3k2
2 + 16k1(b+ c)],

h1 = H1(ϕ1, 0) =
ϕ1

64k3
1

[−15k3
2 + 56k1k2(b+ c) + (8k1(b+ c) − 3k2

2)
√

∆],

h2 = H1(ϕ2, 0) =
ϕ2

64k3
1

[15k3
2 − 56k1k2(b+ c) + (8k1(b+ c) − 3k2

2)
√

∆],

hs = H1(ϕs, Y±) =
3k6

2 − 4k4
2k1(7b+ 4c) + 64k2

1k
2
2b(b+ c) + 256k3

1bc
2

64k4
1(4k1b− k2

2)
.

1. The case of B = k2(k2
2−4k1(b+c))

4k3
1

= 0. Under this parametric condition, the phase portraits of (8)
are symmetric.

(i) k1 �= 0, k2
2 = 4k1(b+ c) ≥ 0.

In this case, we have that A = − b+c
k1
, ∆ = 4k1(b+c), ∆1 = 4k1c(c−b), R = b−c

k1
, ϕ1 = −

√
k1(b+c)

k1
=

− k2
2k1
, ϕ2 = 0, ϕs = 0, Y± = ±

√
−k1(b−c)

|k1| , h1 = (b+c)2

4k2
1

= h0, h2 = 0, hs = (b−c)2

4k2
1
.
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Fig. 1. The bifurcations of phase portraits of system (11) for k1 < 0, b + c ≤ 0. (a) −∞ < b < −3c, (b) b = −3c,
(c) −3c < b < −c and (d) b = −c.
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System (8) becomes

dϕ

dη
= y

(
c− b

k1
+ ϕ2 − y2

)
,

dy

dη
= −ϕ

(
b+ c

k1
− ϕ2 + y2

)
. (11)

For k1 < 0 and k1 > 0, respectively, in different regions of the (c, b)-parametric half-plane,
we obtain the bifurcations of phase portraits of (11) shown in Figs. 1(a)–1(d) and Figs. 2(a)–2(f),
respectively.

(ii) k1 �= 0, k2 ≡ 0.

In this case, A = 2(b+c)
k1

,∆ = −32k1(b+c),∆1 = 8k1b
2, R = − 2c

k1
, ϕ0 = 0, ϕ1 = −

√
−2k1(b+c)

k1
= −ϕ2,

ϕs = 0, Y± = ±
√

2c
k1
, h0 = 0, h1 = (b+c)2

k2
1

= h2, hs = c2

k2
1
.

Equation (8) has the form

dϕ

dη
= −y

(
2c
k1

− ϕ2 + y2

)
,

dy

dη
= ϕ

(
2(b+ c)
k1

+ ϕ2 − y2

)
. (12)

For k1 > 0 and k1 < 0, respectively, in different regions of the (c, b)-parametric half-plane,
we obtain the bifurcations of phase portraits of (12) shown in Figs. 3(a)–3(h) and Figs. 4(a)–4(f),
respectively.
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Fig. 2. The bifurcations of phase portraits of system (11) for k1 > 0, b + c ≥ 0. (a) b = −c, (b) −c < b < 0, (c) b = 0,
(d) 0 < b < c, (e) b = c and (f) c < b < ∞.
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Fig. 3. The bifurcations of phase portraits of system (12) for k1 > 0, k2 ≡ 0. (a) −∞ < b < −2c, (b) b = −2c, (c) −2c < b < c,
(d) b = −c, (e) −c < b < 0, (f) b = 0, (g) 0 < b < c and (h) b ≥ c.

2. The case of B �= 0. In this case, the vector
fields defined by (8) are nonsymmetric.

Suppose that b + c < 0, k1 �= 0, for a fixed
c > 0. In this case, corresponding to the different
parameter regions in the (k1, k2)-plane partitioned

by the following bifurcation curves:

k1 = 0, k2 = 0, k2
2 = 4bk1,

k2
2 =

32(b+ c)
9

k1 ≡ λ1k1, k2
2 =

8b2

2b− c
k1 ≡ λ2k1,
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Fig. 4. The bifurcations of phase portraits of system (12) for k1 < 0, k2 ≡ 0. (a) −∞ < b ≤ −c, (b) −c < b < − 1
2c,

(c) b = − 1
2c, (d) − 1

2c < b < 0, (e) b = 0 and (f) b > 0.

we have the phase portraits of (8) shown in
Fig. 5(a)–5(v).

Similarly, for c > 0, b + c < 0 and −c < b ≤ 0,
0 < b ≤ 2c, b > 2c, respectively, we can obtain sim-
ilar bifurcations of phase portraits of (8). To save
space, we omit them.

As in [Li et al., 2010], system (7) is called the
associated regular system of (5). Unlike the first
class of singular traveling system (see [Li & Chen,
2007; Li & Dai, 2007]), for the second class of sin-
gular traveling wave systems determined by Eq. (5)
(or (5a)), even its associated regular system (7) (or
(8)) has a family of smooth periodic solutions and
homoclinic or heteroclinic orbits, the existence of
singular curves defined by ϕ2 − y2 = R implies the
existence of breaking wave solutions ϕ(ξ) of Eq. (3),
when the phase orbits of these solutions intersect
with a branch of the singular curve ϕ2 − y2 = R at
two points. Note that the two branches of hyperbola
ϕ2 − y2 = R are two singular curves of the vector

field defined by system (5a). For example, consider
the case of ϕ > 0 in Fig. 1(a), when ξ is varied
along the loop orbit defined by H(φ, y) = h2 = 0
and passes through the hyperbola, on both the left-
hand and the right-hand sides of the hyperbola
ϕ2 − y2 = R, the vector field defined by system
(5a) has opposite directions. This implies that the
loop orbit of system (5a), defined by H1(φ, y) = h2,
consists of three breaking wave solutions of Eq. (2).

Similarly, for a closed orbit defined by
H1(φ, y) = h with |h − h2| � 0, if it intersects the
hyperbola φ−y2 = R at two points then this closed
orbit consists of three breaking wave solutions of
Eq. (2).

Generally, for the first class of singular traveling
wave systems, near a singular straight line φ = φs, ξ
is a “slow time scale” variable while η is a “fast time
scale” variable. But, for the second class of singular
traveling wave systems, we know that both ξ and η
have the same “time scale”.
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Fig. 5. The bifurcations of phase portraits of system (8) for b + c < 0. (a) k1 > 0, k2 < 0, h0 < h1 < hs, (b) k1 > 0, k2 < 0,
h0 < h1 = hs, (c) k1 > 0, k2 < 0, h0 < hs < h1, (d) k1 > 0, k2 = 0, h0 < h1 = h2 = hs, (e) k1 > 0, k2 > 0, h0 < hs < h2,
(f) k1 > 0, k2 > 0, h0 < hs = h2, (g) k1 > 0, k2 > 0, h0 < h2 < hs, (h) k1 < 0, k2 >

√
4bk1, (i) k1 < 0, k2 =

√
4bk1,

(j) k1 < 0,
√

λ2k1 < k2 <
√

4bk1, (k) k1 < 0, k2 =
√

λ2k1, (l) k1 < 0,
√

λ1k1 < k2 <
√

λ2k1, (m) k1 < 0, k2 =
√

λ1k1,
(n) k1 < 0, 0 < k2 <

√
λ1k1, (o) k1 < 0, k2 = 0, (p) k1 < 0, 0 > k2 > −√

λ1k1, (q) k1 < 0, k2 = −√
λ1k1, (r) k1 < 0,

−√
λ1k1 > k2 > −√

λ2k1, (s) k1 < 0, k2 = −√
λ2k1, (t) k1 < 0, −√

λ2k1 > k2 > −√
4bk1, (u) k1 < 0, k2 = −√

4bk1 and
(v) k1 < 0, k2 < −√

4bk1.
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Fig. 5. (Continued)
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Fig. 5. (Continued)

3. Some Exact Traveling Wave Solutions of (1) in the Symmetric Case

To investigate the exact parametric representations of the traveling wave solutions of Eq. (2), we first
consider system (8) with B = 0. By using the polar coordinates ϕ = r cos θ, y = r sin θ, system (8)
becomes

dr

dη
= r sin 2θ

(
r2 cos 2θ +

1
2
A

)
,

dθ

dη
= r2 cos2 2θ +A cos2 θ +R sin2 θ, (13)

which has the first integral

r4 cos2 2θ + 2r2(A cos2 θ +R sin2 θ) + 4h = 0. (14)

By using (14), we obtain

dθ

dη
= ±1

2

√
((A−R)2 − 16h) cos2 2θ + 2(A2 −R2) cos 2θ + (A+R)2

≡ ±
√
V (θ, h) (15)

and

dξ = (ϕ2 − y2 −R)dη = (r2 cos 2θ −R)dη. (16)
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3.1. M-shape and W-shape wave
profiles consisting of three
breaking waves

Suppose that k1 < 0, k2
2 = 4k1(b + c) > 0, b +

c < 0. We discuss the homoclinic orbits defined
by H1(ϕ, y) = 0 to the origin O(0, 0) shown in
Figs. 1(a)–1(c). We see from (15) that tan θ =√

b+c
b−c tanh(ω1η), where ω1 = 1

2|k1|
√
b2 − c2. Thus,

we have the solutions of (13) as follows:

ϕ(η) = ±
(b− c)

√
2(b+ c)
k1

cosh(ω1η)

(b+ c) − 2c cosh2(ω1η)
. (17)

To have the parametric representations of the trav-
eling wave solutions of (1) with respect to ξ, we see
from (13) that

dξ =
2dθ

cos 2θ
+

(b− c)dθ
(b+ c) cos2 θ + (b− c) sin2 θ

. (18)

It implies that corresponding to two homoclinic
orbits, Eq. (2) has the M-shape and W-shape wave
profiles:

ϕ(χ) = ±
(b− c)

√
2(b+ c)
k1

cosh(χ)

(b+ c) − 2c cosh2(χ)
,

ξ(χ) = −1
2

√
b− c

b+ c
χ− ln




1 +
√
b+ c

b− c
tanh(χ)

1 −
√
b+ c

b− c
tanh(χ)


.
(19)

When −∞ < b < −3c, corresponding to two
homoclinic orbits, the functions defined by (17)
and (19) give rise to M-shape and W-shape wave
profiles of Eq. (2) consisting of three breaking waves
as shown in Fig. 6(a) and 6(b), respectively. When
−3c ≤ b < −c, the functions defined by (17)
and (19) give rise to the solitary waves shown in
Figs. 6(c) and 6(d), respectively.
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Fig. 6. The profiles of waves with respect to η and ξ, respectively. (a) ϕ(η), (b) ϕ(ξ), (c) ϕ(η) and (d) ϕ(ξ).
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3.2. Smooth kink and anti-kink waves

3.2.1. Suppose that k1 > 0, k2
2 = 4k1(b+ c) > 0, b+ c > 0, b < 0, c > 0

We discuss two heteroclinic orbits defined by H1(ϕ, y) = h1 = (b+c)2

4k2
1

connecting two equilibrium points
E1(ϕ1, 0) and E0(ϕ0, 0) as shown in Fig. 2(b). We can see from (15) that tan θ = α2 tanh(ω2η), Thus, we
have the solutions of (13) as follows:

ϕ(η) = ±
√|b|(b+ c) sinh(ω2η)
(
√
c+

√|b| cosh(ω2η)
, (20)

where α2 =
√

|b|
b+c , ω2 = 2

k1

√
c(b+ c).

To have the parametric representations of the traveling wave solutions of Eq. (2) with respect to ξ, we
obtain from (14) that

dξ =
1
k1

[
− 1

2 cos 2θ
+

2c
cos 2θ

√
V (θ, h1)

+
2c√

V (θ, h1)

]
dθ, (21)

where V (θ, h1) = 1
k2
1
[−(c(2b+ c) cos2 2θ + 2bc cos 2θ + c2]. It shows that, corresponding to two heteroclinic

orbits, Eq. (2) has a kink wave solution and an anti-kink wave solution:

ϕ(χ) = ±
√|b|(b+ c) sinh(χ)
(
√
c+

√|b| cosh(χ)
,

ξ(χ) = 2cχ− 1
4k1

ln
1 + 2w + w2

1 − 2w + w2
+
√
c(c+ b) ln

(w + 1)(α2
2 + w + α2

√
1 + α2

2 coshχ)
(w − 1)(α2

2 −w + α2

√
1 + α2

2 coshχ)
,

(22)

where w = α2 sinh(χ).

3.2.2. Suppose that k1 > 0,
k2

2 = 4k1(b+ c) > 0, b = 0

We discuss four heteroclinic orbits defined by H1(ϕ,
y) = h1 = h0 = c2

4k2
1

connecting four equilibrium
points E1(ϕ1, 0), S1,2(0, Y±) and E0(ϕ0, 0) as shown
in Fig. 2(c). We obtain from (15) that dθ

dη =
c
k1

sin(2θ). Thus, for the heteroclinic orbit S+E0

connecting S1(0, Y+) and E0(ϕ0, 0), we have the fol-
lowing parametric representation with respect to η:

ϕ(η) =

√
c

k1

1 + e
− 2c

k1
η
. (23)

Noting that dξ = ( 1
sin 2θ + 2

sin 4θ − 1
cos 2θ )dθ, we have

a kink wave solution of Eq. (2) as follows:

ϕ(χ) =

√
c

k1

1 + e−χ
,

ξ(χ) =
1
2
(χ+ ln coshχ).

(24)

For the heteroclinic orbit S−E0 connecting
S2(0, Y−) and E0(ϕ0, 0), we obtain an anti-kink
wave solution of Eq. (2) with the parametric rep-
resentation with respect to ξ:

ϕ(χ) =

√
c

k1

1 + e−χ
, ξ(χ) = −1

2
(χ+ ln coshχ).

(25)

4. Smooth Solitary Waves

Suppose that k1 > 0, k2
2 = 4k1(b + c) > 0, 0 <

b < c. We discuss two heteroclinic orbits defined
by H1(ϕ, y) = hs = (b−c)2

4k2
1

connecting two equi-
librium points S1,2(0, Y±) shown in Fig. 2(d). We

obtain from (13) that tan θ =
√

b
c−b sinh(ω3η) ≡

α3 sinh(ω3η), where ω3 = 2
k1

√
c(c− b). Thus, we

have the solutions of (11) as follows:

φ(η) = ± c− b√
c+

√
b cosh(ω3η)

. (26)

To have the parametric representations of the
traveling wave solutions of Eq. (2) with respect
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Fig. 7. The profiles of waves with respect to η and ξ, respectively. (a) ϕ(η), (b) ϕ(ξ), (c) ϕ(η) and (d) ϕ(ξ).

to ξ, we get from (14) that

dξ =
1
k1

[
− 1

2 cos 2θ
+

2c
cos 2θ

√
V (θ, hs)

+
2c√

V (θ, hs)

]
dθ, (27)

where V (θ, hs) = 1
k2
1
[c(2b − c) cos22θ + 2bc cos 2θ +

c2]. It implies that, corresponding to two hetero-
clinic orbits, Eq. (2) has two solitary wave solutions:

ϕ(χ) = ± c− b√
c+

√
b cosh(χ)

,

ξ(χ) = 2cχ− 1
4k1

ln
1 + 2w + w2

1 − 2w + w2
+
√
c(c− b)

× ln
(w + 1)(α2

3 + w + α3

√
1 + α2

3 coshχ)
(w − 1)(α2

3 − w + α3

√
1 + α2

3 coshχ)
,

(28)

where w = α3 sinh(χ).

Corresponding to two heteroclinic orbits as
shown in Fig. 2(d), the functions defined by (26)
and (28) give rise to two solitary wave solutions
which are shown in Figs. 7(a) and 7(b), respectively.

5. Two-Peak Wave Profiles
Consisting of Three Breaking
Waves

Suppose that k1 > 0, k2 = 0, 0 < b < c or
b ≥ c > 0. We discuss the homoclinic orbits
defined by H1(ϕ, y) = 0 to the origin O(0, 0) shown
in Figs. 3(g) and 3(h). We obtain from (13) that
tan θ = α4 tanh(ω4η), where α4 =

√
c

b+c , ω4 =
2
k1

√
c(b+ c). Thus, we have the solutions of (12)

as follows:

ϕ(η) = ±c
√

2(b+ c) sinh(ω4η)
c+ b cosh2(ω4η)

. (29)

To have the parametric representations of the trav-
eling wave solutions of Eq. (2) with respect to ξ, we
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get from (13) that

dξ =
2dθ

cos 2θ
+

cdθ

(b+ c) cos2θ − c sin2θ
. (30)

It means that, corresponding to two homoclinic
orbits, Eq. (2) has a two-peak wave solution:

ϕ(χ) = ±c
√

2(b+ c) sinh(χ)
c+ b cosh2(χ)

,

ξ(χ) = −1
2

√
c

b+ c
χ− ln




1 +

√
b+ c

c
tanh(χ)

1 −
√
b+ c

c
tanh(χ)


.
(31)

Corresponding to two homoclinic orbits in
Fig. 3(h), the functions defined by (31) give rise
to two-peak wave profiles of Eq. (2) consisting of
three breaking waves shown in Fig. 7(d).

6. The Exact Traveling Wave
Solutions of Eq. (2) in a
Nonsymmetric Case

Now, assume that B �= 0. We know from (10) that
in order to obtain exact solutions of (8), we must
assume that A = −R, i.e. the conditions k2 =
±√

4k1b,A = 2c−b
k1

= −R,∆ = 4k1(b − 8c), B =
(−2c)

√
k1b

k2
1

are satisfied.

Suppose that (i) k2 = −√
4k1b, b > 8c > 0,

k1 > 0 or (ii) k2 =
√

4k1b, b < 0, k1 < 0.
Then, there exist three equilibrium points of (8):

E0(ϕ0, 0), E1,2(ϕ1,2, 0), where ϕ0 = ∓
√

b
k1
, ϕ1,2 =

± 1

2
√

|k1|
[
√|b| ∓√|b− 8c|].

Thus, under the parametric conditions (i),
we have the phase portrait of (8) as shown in
Figs. 8(a)–8(c), where the parameter value is b =
bM such that ϕM =

√
R and (ϕM , 0) is the intersec-

tion point of the homoclinic orbit to the equilibrium
(ϕ1, 0) with the ϕ-axis.

Under the parametric conditions (ii), we have
the phase portrait of (8) as shown in Figs. 9(a)–
9(c), where the parameter value is b = bm such that
ϕm = −√

R and (ϕm, 0) is the intersection point of
the homoclinic orbit to the equilibrium (ϕ1, 0) with
the ϕ-axis.

To find the parametric representations of the
homoclinic orbits shown in Fig. 8, we first obtain
from (10) that

y2 = (ϕ2 −R) ±
√

(R2 − 4h) − 4Bϕ. (32)

On the left-hand side of the positive half-branch of
the hyperbola ϕ2 − y2 = R, along the loop orbit (a
branch of the level curve of H1(φ, y) = h), we have
y2 = (ϕ2 − R) +

√
(R2 − 4h) − 4Bϕ; while on the

right-hand side, y2 = (ϕ2−R)−
√

(R2 − 4h) − 4Bϕ.
When y = 0, (32) becomes

ϕ4 − 2Rϕ2 + 4Bϕ+ 4h = 0.

For h = h1 = H1(ϕ1, 0), we have

ϕ4 − 2Rϕ2 + 4Bϕ+ 4h1

= (ϕ− ϕ1)2(ϕ− ϕM )(ϕ − ϕ3)

with ϕ3 < ϕ1 < ϕ2 < ϕM .
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Fig. 8. The phase portraits of (8) when B �= 0, k1 > 0, b > 8c > 0. (a) 8c < b < bM , (b) b = bM and (c) −∞ < b < bM .
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Fig. 9. The phase portraits of (8) when B �= 0, k1 < 0, b < 0. (a) bm < b < 0, (b) b = bm and (c) −∞ < b < bm.

Let ψ2 = (R2 − 4h) − 4Bϕ, i.e. ϕ = 1
4B (R2 −

4h− ψ2). Then, (32) becomes

y2 =
1

16B2
[(R2 − 4h)2 − 16B2R± 16B2ψ

− 2(R2 − 4h)ψ2 + ψ4]

≡ 1
16B2

F1,2(ψ). (33)

Thus, we have
dψ

dη
= ±1

2

√
F1,2(ψ),

dψ

dξ
= ± 1

2ψ

√
F1,2(ψ).

(34)

Considering the homoclinic orbit defined by
H1(ϕ, y) = h1 in Fig. 8(c), the functions F1,2(ψ)
on the right-hand side of Eq. (34) can be written as

F1(ψ) = ψ4 + (8h1 − 2R2)ψ2 + 16B2ψ

+ (R4 − 16RB2 − 8R2h1 + 16h1)

= (ψ − ψ1)2(ψ − ψ3)(ψ − ψm), (35)

F2(ψ) = ψ4 + (8h1 − 2R2)ψ2 − 16B2ψ

+ (R4 − 16RB2 − 8R2h1 + 16h1)

= (ψ − ψa)2(ψ − ψb)(ψ − ψM ), (36)

where

ψ1 =
√

(R2 − 4h1) − 4Bϕ1,

ψm = −
√

(R2 − 4h1) − 4BϕM ,

ψ3 = −
√

(R2 − 4h1) − 4Bϕ3,

ψ3 < ψm < ψ1;

ψa = −
√

(R2 − 4h1) − 4Bϕ1,

ψM =
√

(R2 − 4h1) − 4BϕM ,

ψb =
√

(R2 − 4h1) − 4Bϕ3,

ψa < ψM < ψb.

It follows from the first equation of (34)–(36)
that

ψ(η) = ψ1

− 2(ψ1 −ψ3)(ψ1 −ψm)
(ψm −ψ3) cosh(ω01η)+ (2ψ1 −ψ3 −ψm)

,

η ∈ (−∞,−Zh1) ∪ η ∈ (Zh1 ,∞); (37)

ψ(η) = ψa

− 2(ψa −ψb)(ψa −ψM )
(ψM −ψb) cosh(ω02η)+ (2ψa −ψb −ψM )

,

η ∈ (−Zh1 , Zh1), (38)

where

ω01 =
1
2

√
(ψ1 − ψ3)(ψ1 − ψm),

ω02 =
1
2

√
(ψa − ψb)(ψa − ψM ),

Zh1 is the value of η satisfying ψ(Zh1) =√
(R2 − 4h1) − 4Bϕs, and (ϕs, ys) is the coordi-

nate of the intersection point of the homoclinic
orbit H1(ϕ, y) = h1 and the singular curve
ϕ2 − y2 = R.

Thus, a parametric representation of the homo-
clinic orbit of system (8) has been obtained, with
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respect to η, as follows:

ϕ(η) =
1

4B
(R2 − 4h1 − ψ2(η)), (39)

where ψ(η) is given by (37) and (38).
In order to obtain the exact solutions of (2) with respect to the variable ξ = x− ct, by using (35) and

the second equation of system (34), and by introducing a parametric variable χ, we obtain

ψ(χ) = ψ1 − 2(ψ1 − ψm)(ψ1 − ψ3)
(ψm − ψ3) cosh(ω01χ) − (2ψ1 − ψm − ψ3)

,

ξ(χ) = x− ct = −2

[
ψ1χ+ ln

(
2
√

(ψ − ψm)(ψ − ψ3) + 2ψ − (ψm + ψ3)
ψm − ψ3

)]
.

(40)

Next, define a value χb of χ by the relationship

ϕ(χb) =
1

4B
(R2 − 4h1 − ψ2(χb)) ≡ ϕs, (41)

where ψ(χ) is given by (40). Corresponding to χb, the second formula of (40) gives the value of ξb = ξ(χb).
Thus, for ξ ∈ (−∞,−ξb), i.e. χ ∈ (χb,∞), we have the following exact and explicit parametric repre-

sentation of a breaking wave solution of Eq. (2):

ϕ(χ) =
1

4B
(R2 − 4h1 − ψ2(χ)),

ξ(χ) = x− ct = −2

[
ψ1χ+ ln

(
2
√

(ψ − ψm)(ψ − ψ3) + 2ψ − (ψm + ψ3)
ψm − ψ3

)]
.

(42)

Using (36) to integrate the second equation of system (34) yields

ψ(χ) = ψa − 2(ψa − ψb)(ψa − ψM )
(ψM − ψb) cosh(ω02χ) + (2ψa − ψb − ψM )

,

ξ(χ) = x− ct = −2

[
ψaχ+ ln

(
2
√

(ψ − ψM )(ψ − ψb) + 2ψ − (ψM − ψb)
ψM − ψb

)]
.

(43)

1

2

3

4

5

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

eta

1

2

3

4

5

–400 –200 0 200 400

(a) (b)

Fig. 10. The M -shape wave profiles with respect to η and ξ, respectively. (a) ϕ(η) and (b) ϕ(ξ).
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Thus, for ξ ∈ (ξb,∞), i.e. χ ∈ (−∞,−χb), we have

ϕ(χ) =
1

4B
(R2 − 4h1 − ψ2(χ)),

ξ(χ) = x− ct = −2

[
ψaχ+ ln

(
2
√

(ψ − ψM )(ψ − ψb) + 2ψ − (ψM − ψb)
ψM − ψb

)]
,

(44)

which gives another breaking wave solution. For
ξ ∈ (0, ξb) and ξ ∈ (−ξb, 0), systems (42) and (44)
respectively determine the third exact breaking
solutions. Figures 10(a) and 10(b) show the differ-
ent wave profiles of the M-shape waves with respect
to the variables η and ξ, respectively.

Similarly, by considering the phase orbits shown
in Fig. 9, we can obtain the W-shape waves with
respect to the variables η and ξ, respectively. In
addition, corresponding to the homoclinic orbits
shown in Figs. 8(a) and 8(b), formula (43) also gives
rise to the exact parametric representation of the
solitary wave solutions.
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