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The modified Kadomtsev–Petviashvili (mKP) equation is revisited from two 1 +1-dimensional inte-
grable equations whose compatible solutions yield a special solution of the mKP equation in view
of a transformation. By employing the finite-order expansion of Lax matrix, the mKP equation is
reduced to three solvable ordinary differential equations (ODEs). The associated flows induced by
the mKP equation are linearized under the Abel–Jacobi coordinates on a Riemann surface. Finally,
a finite band solution expressed by Riemann-theta functions for the mKP equation is obtained
through the Jacobi inversion.
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1. Introduction

The finite band (algebro-geometric or quasi-periodic) solutions are a remarkable class of
exact solutions, which were originally introduced in 1974 by Novikov [21] dedicating to the
integration of the Korteweg-de Vries equation with the periodic boundary condition. A fea-
sible theory of finite band solutions was developed with the usage of the spectral technique
(see more details in [6, 7, 11, 17, 18]). Later, some well-known soliton equations, such as
the Korteweg-de Vries [7, 11], nonlinear Schrödinger [12], sine-Gordon [15], KP [16] equa-
tions, were solved with finite band solutions in explicit form. Recently, the nonlinearization
of Lax pair [1] has been developed to obtain the algebro-geometric solutions of soliton
equations in (1+1)-dimension [22, 23, 29] with the help of algebro-geometric tool. A more
extended progress of the nonlinearization method and algebro-geometric scheme is that the
finite parametric solutions of two compatible 1 + 1-dimensional integrable equations gener-
ate solutions of a (2 + 1)-dimensional integrable equation [2, 4, 8, 13]. Following this idea,
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in this paper we find a different decomposition to solve the mKP equation by using the
finite-order expansion of Lax matrix [26].

To get finite band solutions of an integrable equation, the crucial point is to choose an
appropriate isospectral problem related to the equation. Then, based on the Lax pair of the
integrable equation, one may apply the powerful tool of the theory of algebraic curves to
derive explicit solutions in terms of Riemann-theta functions. In this paper we decompose
the mKP equation into two 1+1-dimensional consistent equations, which are integrable and
able to be solved through integrating three solvable ODEs. The Abel–Jacobi coordinates
are appropriately chosen to straighten out the phase flows on the complex torus associated
with the mKP equation. Furthermore, by employing the Jacobi inversion on the Riemann
surface of hyperelliptic curve, the finite band solution of the mKP equation is obtained and
expressed in terms of Riemann-theta functions. The whole paper is organized as follows.
In Sec. 2, we specify the relation between the mKP equation and two (1 + 1)-dimensional
integrable equations with the help of a transformation. In Sec. 3, we reduce the mKP
equation into three solvable ODEs. In the last section, we present a finite band solution of
the mKP equation in explicit form.

2. Decomposition of the mKP Equation

Our starting point is the isospectral problem that was presented in 2001 by Qiao [24],

ϕx = Uϕ, U =


−1

2
λ+

1
2
v −v

λu
1
2
λ− 1

2
v


, ϕ =

(
ϕ1

ϕ2

)
, (2.1)

where λ is a spectral parameter; u and v are two spectral potentials. To derive an integrable
hierarchy associated with (2.1), let us calculate the stationary zero-curvature equation

Vx = [U, V ], V =

(
λa b

λc −λa

)
=
∑
j≥0

(
λaj bj

λcj −λaj

)
λ−j , (2.2)

which is equivalent to

ajx = −vcj − ubj ,

bjx = 2vaj+1 − bj+1 + vbj,

cjx = 2uaj+1 + cj+1 − vcj .

(2.3)

Let Sj = (cj+1, bj+1, aj+1)T , then (2.3) can be rewritten as

KSj−1 = JSj, Sj |(u,v)=0 = 0, S−1 =
(
−u, v, 1

2

)T

, j ≥ 0, (2.4)

where

J =




1 0 2u

0 1 −2v

v u ∂


, K =



∂ + v 0 0

0 −∂ + v 0

v u ∂


. (2.5)
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It is easy to see that the first equation in (2.3) leads to the identity vS(1)
j +uS(2)

j +∂xS
(3)
j = 0,

and each Sj could be determined uniquely by the recursive relation (2.4). For instance, the
first two members are

S0 =



−ux − 2u2v − uv

−vx + v2 + 2uv2

uv


,

and

S1 =



−uxx − 6u2v2 − 6u3v2 − 6uuxv − 2uxv − uvx − uv2

vxx − 3vvx − 6uvvx + 6u2v3 + 6uv3 + v3

uxv − uvx + 3u2v2 + 2uv2


.

For any positive integer n, let us choose an auxiliary isospectral problem of (2.1) as
follows,

ϕtn = V (n)ϕ, V (n) =

(
V

(n)
11 V

(n)
12

V
(n)
21 −V (n)

11

)
, n ≥ 1, (2.6)

where

V
(n)
11 = −1

2
bn +

n∑
j=0

ajλ
n+1−j, V

(n)
12 =

n∑
j=0

bjλ
n−j, V

(n)
21 =

n∑
j=0

cjλ
n+1−j.

Thus the compatibility condition of (2.1) and (2.6), under the isospectral assumption
λtn = 0, leads to the zero-curvature equation

Utn − V (n)
x + [U, V (n)] = 0,

which generates the desired 1 + 1-dimensional integrable hierarchy

(u, v)Ttn = (−an + cn,−bn)Tx , n ≥ 0, (2.7)

in the sense of Lax compatibility. Clearly, the first two nontrivial integrable equations are{
uy = −uxx − 4uuxv − 2u2vx − 2uxv − 2uvx,

vy = vxx − 2vvx − 2uxv
2 − 4uvvx,

(2.8)

and {
ut = −uxxx − 3(uxv)x − 3(uv2)x − 9(u2v2)x − 6(u3v2)x − 6(uuxv)x,

vt = −vxxx + 3(vvx)x + 6(uvvx)x − 6(u2v3)x − 6(uv3)x − 3v2vx,
(2.9)

where we set t1 = y and t2 = t in time variables. And, it is worthwhile to point out that
the system (2.8) belongs to the integrable equations of nonlinear Schrödinger type [19].
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Let (u, v) be the common solution of (2.8) and (2.9), and introduce a transformation

q(x, y, t) = u(x, y, t)v(x, y, t). (2.10)

Through some lengthy computations, we have

qy = uvxx − vuxx − 6uuxv
2 − 6u2vvx − 2uxv

2 − 4uvvx,

∂−1
x qy = uvx − vux − 3u2v2 − 2uv2,

∂−1
x qyy = uvxxx + vuxxx − uxxvx − vxxux − 6u2v2

x − 4uv2
x + 6u2

xv
2

+ 8uv2uxx + 36u2v3ux + 36u3v2vx + 28uuxv
3 + 44u2v2vx

− 8u2vvxx + 4v2uxx + 4uxv
3 + 12uv2vx − 4uvvxx + 4vuxvx,

qt = −uvxxx − vuxxx − 3uxxv
2 − 3uxvvx − 3uxv

3 − 9uv2vx − 24uuxv
3

− 36u2v2vx − 30u2uxv
3 − 30u3v2vx − 6u2

xv
2 + 6u2v2

x

− 6uv2uxx + 6u2vvxx + 3uv2
x + 3uvvxx,

which retrieve the mKP equation [14]

qt = −1
4
(qxx − 2q3)x +

3
4
(2qx∂−1

x qy − ∂−1
x qyy). (2.11)

So, the mKP equation (2.11) is revisited through two (1 + 1)-dimensional integrable
Eqs. (2.8) and (2.9), which are in the same integrable hierarchy (2.7). This implies that
compatible solutions of two (1 + 1)-dimensional integrable equations can produce a special
solution of the mKP equation (2.11) through the transformation (2.10).

3. The Solvable Ordinary Differential Equations

In this section, we further decompose the two (1+1)-dimensional integrable equations (2.8)
and (2.9) into systems of solvable ODEs that are compatible. Let ψ = (ψ1, ψ2)T and φ =
(φ1, φ2)T be the basic solutions of linear differential equations (2.1) and (2.6). Let

W =

(
f g

h −f

)
=

1
2
(φψT + ψφT )σ, σ =

(
0 −1

1 0

)
. (3.1)

From (2.1) and (2.6), one can readily verify

Wx = [U,W ], Wtn = [V (n),W ], (3.2)

which imply that the detW of matrix W is a constant of motion along both x- and tn-
flows [27]. Two equations in (3.2) can be rewritten as the component forms:

fx = −vh− λug,

gx = 2vf − (λ− v)g,

hx = 2λuf + (λ− v)h,

(3.3)
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and

ftn = hV
(n)
12 − gV

(n)
21 ,

gtn = 2gV (n)
11 − 2fV (n)

12 ,

htn = 2fV (n)
21 − 2hV (n)

11 .

(3.4)

Assume that the functions f, g and h are finite degree polynomials of λ, namely,

f =
N∑

j=0

fjλ
n+1−j, g =

N∑
j=0

gjλ
n−j, h =

N∑
j=0

hjλ
n+1−j . (3.5)

Substituting the expression (3.5) into (3.3) yields

KGj−1 = JGj , JG−1 = 0, KGN−1 = 0, Gj = (hj+1, gj+1, fj+1)T . (3.6)

Apparently, vhj + ugj + ∂xfj = 0; and JG−1 = 0 admits a general solution

G−1 = α0S−1, (3.7)

where α0 is an integral constant. Therefore, Gj can be recursively determined from (3.6).
Acting with the operator J−1K on both sides of Eq. (3.7) k + 1 times results in

Gk =
k∑

j=0

αjSk−j, 0 ≤ k ≤ N, (3.8)

where αj are integral constants. Substituting (3.8) into KGN−1 = 0 yields the following
Nth order stationary equation,

α0XN + α1XN−1 + · · · + αNX0 = 0,

where Xj = JGj (j = 1, . . . , N) are vector fields. This means that (u, v) is a finite band
solution of the integrable hierarchy (2.7).

Without loss of generality, let us restrict our attention to α0 = 1. Recalling Eq. (3.6),
one can easily compute

f0 =
1
2
, g0 = v, h0 = −u,

f1 = uv + α1,

g1 = −vx + v2 + 2uv2 + 2α1v,

h1 = −ux − 2u2v − uv − 2α1u,

f2 = uxv − uvx + 3u2v2 + 2uv2 + 2α1uv + α2,

g2 = vxx − 3vvx − 6uvvx + 6u2v3 + 6uv3 + v3

+ 4α1uv
2 + 2α2v + 2α1v

2 − 2α1vx,

h2 = −uxx − 6u2v2 − 6u3v2 − 6uuxv − 2uxv − uvx

−uv2 − 2α1ux − 2α1uv − 4α1u
2v − 2α2u.

(3.9)
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Taking into account Eq. (3.5), we define

g = v
N∏

j=1

(λ− µj), h = −λu
N∏

j=1

(λ− νj). (3.10)

It follows from (3.5) and (3.10) that

g1 = −v
N∑

j=1

µj � −vσ1, h1 = u
N∑

j=1

νj � uσ2,

g2 = v
N∑

i,j=1,i<j

µiµj � vσ̄1, h2 = −u
N∑

i,j=1,i<j

νiνj � −uσ̄2,

(3.11)

where the symbol � means that the left-hand side is denoted by the right-hand side, for
short. After a direct calculation, the combination of (3.9) and (3.11) gives

∂x ln v − v − 2uv − 2α1 = σ1, −∂x lnu− v − 2uv − 2α1 = σ2, (3.12)

and 


∂y ln v + 2uv(3uv − ∂x ln v + ∂x lnu) + v2 + 6uv2 − vx

= σ̄1 + 2α1σ1 + 4α2
1 − 2α2,

−∂y lnu+ 2uv(3uv − ∂x ln v + ∂x lnu) + v2 + 6uv2 − vx

= σ̄2 + 2α1σ2 + 4α2
1 − 2α2,

(3.13)

which imply that

∂x lnuv = σ1 − σ2, ∂y lnuv = σ̄1 − σ̄2 + 2α1(σ1 − σ2). (3.14)

Thus, we have

∂y lnuv = ∂2
x(ln v − lnu) + (∂x ln v)2 − (∂x lnu)2 − 6uv∂x lnuv − 4vx − 2vuxu

−1

= ∂x(σ1 + σ2) + σ2
1 − σ2

2 + (4α1 − 2uv)(σ1 − σ2)
(3.15)

and

q = uv = α1 +
1
4
(σ1 + σ2) +

1
4(σ1 − σ2)


2∂x(σ1 + σ2) +

N∑
j=1

(µ2
j − ν2

j )


, (3.16)

where the following two identities

2σ̄1 = σ2
1 −

N∑
j=1

µ2
j , 2σ̄2 = σ2

2 −
N∑

j=1

ν2
j ,

are applied in the above calculations.
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Since detW is a (2N + 2)-degree polynomial of λ, we define

− detW = f2 + gh =
1
4

2N+2∏
j=1

(λ− λj) � 1
4
R(λ), (3.17)

where λj (1 ≤ j ≤ N + 2) are roots of the (2N + 2)-degree polynomial. Substituting (3.5)
into (3.17) and comparing the coefficient of λ2N+1 and the one of λ2N in both sides of (3.17),
we derive

2f0f1 + g0h0 = −1
4

2N+2∑
j=1

λj , 2f0f2 + f2
1 + h0g1 + h1g0 =

1
4

2N+2∑
i,j=1,i<j

λiλj, (3.18)

which yields

α1 = −1
4

2N+2∑
j=1

λj, α2 =
1
4

2N+2∑
i,j=1,i<j

λiλj − 1
16


2N+2∑

j=1

λj




2

. (3.19)

Recalling Eqs. (3.17), (3.10) and (3.3), one can check the following formulae

f |λ=µk
=

1
2

√
R(µk), f |λ=νk

=
1
2

√
R(νk), (3.20)




gx|λ=µk
= −vµk,x

N∏
i=1,i�=k

(µk − µi),

hx|λ=νk
= uνkνk,x

N∏
i=1,i�=k

(νk − νi),

(3.21)

and

gx|λ=µk
= v
√
R(µk), hx|λ=νk

= uνk

√
R(νk). (3.22)

Therefore, from (3.21) and (3.22) we obtain

µk,x = −
√
R(µk)∏N

i=1,i�=k(µk − µi)
, νk,x =

√
R(νk)∏N

i=1,i�=k(νk − νi)
, 1 ≤ k ≤ N. (3.23)

Employing a similar procedure for Eqs. (2.6) and (3.10), we have

V
(1)
12 |λ=µk

= v(µk − σ1 − 2α1),

V
(1)
21 |λ=νk

= uνk(−νk + σ2 + 2α1),

V
(2)
12 |λ=µk

= v(µ2
k − µk(σ1 + 2α1) + σ̄1 + 2α1σ1 + 4α2

1 − 2α2),

V
(2)
21 |λ=νk

= uνk(−ν2
k + νk(σ2 + 2α1) − σ̄2 − 2α1σ2 − 4α2

1 + 2α2).

(3.24)

A calculation analogous to the result (3.23) leads to

µk,tn =
V

(n)
12

√
R(µk)

v
∏N

i=1,i�=k(µk − µi)
, νk,tn =

V
(n)
21

√
R(νk)

uνk
∏N

i=1,i�=k(νk − νi)
, 1 ≤ k ≤ N. (3.25)
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We summarize this section with the following conclusion: if constant spectral parame-
ters λ1, λ2, . . . , λ2N+2 are given, and let µ(x, tn) and ν(x, tn) be distinct solutions of two
ODEs (3.23) and (3.25); thus u, v determined by Eqs. (3.12)–(3.14) are solutions of inte-
grable equations (2.8) and (2.9). Therefore, q = uv is a special solution of the mKP
equation (2.11).

4. The Finite Band Solution

Let us first introduce the Riemann surface of hyperelliptic curve,

Γ : ξ2 = R(λ), R(λ) =
2N+2∏
j=1

(λ− λj),

whose genus is N . For the same λ, there are two points (λ,
√
R(λ)) and (λ,−√R(λ)) on

the upper and lower sheets of Γ. Additionally, there exist two points at infinities that are
not branch points due to degR(λ) = 2N+2. Under an alternative local coordinate z = λ−1,

the two points are viewed as ∞1 = (0, 1) and ∞2 = (0,−1), respectively.
Let us choose a set of canonical basis of cycles: a1, a2, . . . , aN ; b1, b2, . . . , bN on Γ, which

are independent if they have the intersection numbers

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij , i, j = 1, 2, . . . , N.

As the following N holomorphic differentials

w̃l =
λl−1dλ√
R(λ)

, 1 ≤ l ≤ N,

are linearly independent on Γ, we may define

Aij =
∫

aj

w̃i, Bij =
∫

bj

w̃i, 1 ≤ i, j ≤ N, (4.1)

where A = (Aij)N×N is an invertible matrix, and B = (Bij)N×N is a symmetric matrix
characterizing Γ. Denote the matrices C and τ by

C = (Aij)−1
N×N , τ = A−1B.

Then τ is a symmetric matrix (τij = τji) with the positive definite imaginary part. We now
normalize w̃l into a new basis wj,

wj =
N∑

l=1

Cjlw̃l, j = 1, 2, . . . , N,

with properties

∫
ai

wj =
N∑

l=1

Cjl

∫
ai

w̃l =
N∑

l=1

CjlAli = δji,

∫
bi

wj = τji.
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For a fixed point p0 on Γ, the Abel–Jacobi coordinates are defined by

ρ
(1)
j (x, y, t) =

N∑
k=1

∫ µk(x,y,t)

p0

wj =
N∑

k=1

N∑
l=1

Cjl

∫ µk

p0

λl−1dλ√
R(λ)

,

ρ
(2)
j (x, y, t) =

N∑
k=1

∫ νk(x,y,t)

p0

wj =
N∑

k=1

N∑
l=1

Cjl

∫ νk

p0

λl−1dλ√
R(λ)

,

1 ≤ j ≤ N. (4.2)

Taking derivative on both sides of the first equation in (4.2), we obtain

∂xρ
(1)
j =

N∑
l=1

N∑
k=1

Cjl
µl−1

k µk,x√
R(µk)

=
N∑

l=1

N∑
k=1

Cjl
−µl−1

k∏N
i=1,i�=k(µk − µi)

. (4.3)

The following algebraic formulae [20]

Is =
N∑

k=1

µs
k∏N

i=1,i�=k(µk − µi)
= δs,N−1, 1 ≤ s ≤ N − 1,

IN = σ1IN−1, IN+1 = σ1IN − σ̄1IN−1,

(4.4)

simplifies Eq. (4.3) as

∂xρ
(1)
j = −Ω(0)

j , Ω(0)
j = CjN , 1 ≤ j ≤ N. (4.5)

A similar procedure can derive

∂yρ
(1)
j = Ω(1)

j , ∂tρ
(1)
j = Ω(2)

j , (4.6)

∂xρ
(2)
j = Ω(0)

j , ∂yρ
(2)
j = −Ω(1)

j , ∂tρ
(2)
j = −Ω(2)

j , (4.7)

where

Ω(1)
j = CjN−1 − 2α1CjN , Ω(2)

j = CjN−2 − 2α1CjN−1 − 2α2CjN + 4α2
1CjN .

Therefore, ρ(1)
j and ρ(2)

j can be directly integrated

ρ
(1)
j = −Ω(0)

j x+ Ω(1)
j y + Ω(2)

j t+ γ
(1)
j ,

ρ
(2)
j = Ω(0)

j x− Ω(1)
j y − Ω(2)

j t+ γ
(2)
j ,

1 ≤ j ≤ N, (4.8)

where

γ
(1)
j =

N∑
k=1

∫ µk(0,0,0)

p0

wj, γ
(2)
j =

N∑
k=1

∫ νk(0,0,0)

p0

wj,

are two integral constants.
In what follows, we discuss the Jacobi inversion that converts the explicit solution (4.8),

i.e. Abel–Jacobi coordinates to the original coordinate q. Let T be the lattice generated
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by 2N periodic vectors {δi, τj}, and J(Γ) = C
N/T be the Jacobian of Γ. The Abel map is

defined by

A : Div(Γ) → J(T ), A(p) =
(∫ p

p0

w1, . . . ,

∫ p

p0

wN

)
,

where p is an arbitrary point. Moreover, A can be linearly extended into the factor group

Div(Γ) : A
(∑

nkpk

)
=
∑

nkA(pk).

Then the Riemann-theta function on Γ is given by [10, 25]

θ(ζ) =
∑

z∈ZN

exp (πi〈Bz, z〉 + 2πi〈ζ, z〉), ζ ∈ C
N ,

〈Bz, z〉 =
N∑

i,j=1

Bijzizj , 〈ζ, z〉 =
N∑

i=1

ziζi, i2 = −1.

Consider two special divisors
∑N

k=1 p
(m)
k ,

A
(

N∑
k=1

p
(m)
k

)
=

N∑
k=1

A(p(m)
k ) =

N∑
k=1

∫ p
(m)
k

p0

w = ρ(m), m = 1, 2,

where p(1)
k = (µk, ζ(µk)) and p(2)

k = (νk, ζ(νk)). The component form is

N∑
k=1

∫ p
(m)
k

p0

wj = ρ
(m)
j , 1 ≤ j ≤ N, m = 1, 2.

According to the Riemann theorem [10], there exist two Riemann constants M (1),M (2) ∈
C

N determined by Γ such that

• f (1)(λ) = θ(A(ζ(λ)) − ρ(1) −M (1)) has N simple zeros at µ1, . . . , µN ,

• f (2)(λ) = θ(A(ζ(λ)) − ρ(2) −M (2)) has N simple zeros at ν1, . . . , νN .

To make the functions single valued, the Riemann surface Γ is cut along with all paths
ak, bk to form a simply connected region, whose boundary is denoted by γ. From the residue
formulae, we obtain

N∑
j=1

µk
j =

1
2πi

∮
γ
λkd ln f (1)(λ) −

2∑
s=1,λ=∞s

Resλkd ln f (1)(λ),

N∑
j=1

νk
j =

1
2πi

∮
γ
λkd ln f (2)(λ) −

2∑
s=1,λ=∞s

Resλkd ln f (2)(λ).

(4.9)

In light of [5], we know that integrals

1
2πi

∮
γ
λkd ln f (m)(λ) =

N∑
j=1

∫
aj

λkwj � Ik(Γ), m = 1, 2,
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are constants that are independent of ρ(m). The only remaining step is to figure out the
residues

f (m)(λ)|λ=∞s = θ

(∫ p

p0

w − ρ(m) −M (m)

)

= θ

(∫ p

∞s

w − πs − ρ(m) −M (m)

)

= θ

(
. . . ,

∫ p

∞s

wj − πsj − ρ
(m)
j −M

(m)
j , . . .

)

= θ

(
. . . , ρ

(m)
j +M

(m)
j + πsj + (−1)s

(
CjNz +

1
2
(CjN−1 +

1
2
R1CjN)z2 + · · ·

)
, . . .

)

= θ(m)
s (ρ(m) +M (m) + πs) + (−1)s+mθ(m)

s,x z +
1
2
((−1)s+m−1θ(m)

s,y + (θ(m)
s,x )2)z2 + . . . ,

where

πsj =
∫ p0

∞s

wj , R1 =
2N+2∑
i=1

λi, s,m = 1, 2.

And then, we arrive at

Resλ=∞sλd ln f (m)(λ) = (−1)s+m∂x ln θ(m)
s ,

Resλ=∞sλ
2d ln f (m)(λ) = (−1)s+m−1∂y ln θ(m)

s + ∂2
x ln θ(m)

s ,
(4.10)

where

θ(1)
s = θ(−Ω(0)x+ Ω(1)y + Ω(2)t+ Υs),

θ(2)
s = θ(Ω(0)x− Ω(1)y − Ω(2)t+ Λs),

with

Υsj = γ
(1)
j +M

(1)
j + πsj, Λsj = γ

(2)
j +M

(2)
j + πsj, 1 ≤ j ≤ N.

Therefore, from (4.9) and (4.10) we get

N∑
l=1

µl = I1(Γ) + ∂x ln
θ
(1)
2

θ
(1)
1

,
N∑

l=1

νl = I1(Γ) + ∂x ln
θ
(2)
1

θ
(2)
2

, (4.11)

and
N∑

l=1

µ2
l = I2(Γ) + ∂y ln

θ
(1)
1

θ
(1)
2

− ∂2
x ln θ(1)

1 θ
(1)
2 ,

N∑
l=1

ν2
l = I2(Γ) + ∂y ln

θ
(2)
2

θ
(2)
1

− ∂2
x ln θ(2)

1 θ
(2)
2 .

(4.12)



June 16, 2011 9:27 WSPC/1402-9251 259-JNMP S1402925111001428

202 J. Chen & Z. Qiao

Substituting (4.11) and (4.12) back into (3.16), we finally obtain a finite band solution of
the mKP equation (2.11)

q = α1 +
1
2
I1(Γ) +

1
4
∂x ln

θ
(1)
2 θ

(2)
1

θ
(1)
1 θ

(2)
2

+
1

4∂x ln θ
(1)
2 θ

(2)
2

θ
(1)
1 θ

(2)
1

{
∂y ln

θ
(1)
1 θ

(2)
1

θ
(1)
2 θ

(2)
2

+ ∂2
x ln

θ
(1)
2 (θ(2)

1 )3

(θ(1)
1 )3θ(2)

2

}
.

(4.13)

From the procedure discussed in the above three sections, we provide an effective way
to construct finite band solutions of (2 + 1)-dimensional integrable equations, which are
involved in the finite-order expansion of Lax matrix [3, 9, 26, 28]. In particular, our paper
provides a distinct decomposition for the mKP equation that consisted of two consistent
1+1-dimensional integrable systems in view of a transformation. As a result, a special finite
band solution expressed by Riemann-theta functions to the mKP equation is presented
through this decomposition.
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