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In this paper we investigate the semi-discrete Ablowitz–Kaup–Newell–Segur (sdAKNS) hierarchy, and specif-
ically their Lax pairs and infinitely many conservation laws, as well as the corresponding continuum limits.
The infinitely many conserved densities derived from the Ablowitz-Ladik spectral problem are trivial, in the
sense that all of them are shown to reduce to the first conserved density of the AKNS hierarchy in the con-
tinuum limit. We derive new and nontrivial infinitely many conservation laws for the sdAKNS hierarchy, and
also the explicit combinatorial relations between the known conservation laws and our new ones. By perform-
ing a uniform continuum limit, the new conservation laws of the sdAKNS system are then matched with their
counterparts of the continuous AKNS system.
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1. Introduction

By discretising a continuous spectral problem one may have a discrete spectral problem and then
a discrete integrable system. For the well known Ablowitz–Kaup–Newell–Segur (AKNS) spectral
problem [1, 2] (

φ1

φ2

)
x
=

(
η q
r −η

)(
φ1

φ2

)
, (1.1)
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its discretisation reads [3, 4] (
φ1,n+1

φ2,n+1

)
=

(
λ Qn

Rn
1
λ

)(
φ1,n

φ2,n

)
, (1.2)

which is referred to as the Ablowitz–Ladik (AL) spectral problem, where the derivative φ j,x is
replaced with a difference φ j,n+1− φ j,n. If the temporal variable t remains continuous, equations
derived from (1.2) are semi-discrete systems which compose the AL hierarchy. However, the AL
hierarchy is not the semi-discrete AKNS (sdAKNS) hierarchy although (1.2) is a discretization of
the AKNS spectral problem (1.1). In fact, equations in the sdAKNS hierarchy are some combina-
tions of the members of the AL hierarchy [27]. For the AL hierarchy, their integrability charac-
teristics, such as conservation laws, symmetries and Hamiltonian structures, have been well stud-
ied [11, 13, 19, 23–27, 29]. In principle, these characteristics should be transferred to the sdAKNS
hierarchy.

In this paper we will investigate the sdAKNS hierarchy, and specifically their Lax pairs and
infinitely many conservation laws, as well as the corresponding continuum limits. The known
infinitely many conserved densities derived from the AL spectral problem (cf. [24]) are trivial. We
will show that all of them go to the first conserved density of the AKNS hierarchy in the continuum
limit. To derive new and nontrivial infinitely many conservation laws, we will rederive the sdAKNS
hierarchy and their Lax pairs so that they are ready for constructing conservation laws as well as for
considering continuum limits. This will be done in Sec.2.

The paper is organized as follows. In addition to Sec.2 mentioned above, in Sec.3 we derive
new infinitely many conservation laws and prove explicit combinatorial relations between the new
conservation laws and the known ones. Finally, in Sec.4 we perform a uniform continuum limit,
under which the Lax pairs and new conservation laws of the sdAKNS system are matched with
their counterparts of the continuous AKNS system.

2. The sdAKNS hierarchy and Lax pairs

2.1. The AL hierarchy and the sdAKNS hierarchy

The sdAKNS hierarchy can be derived from the AL hierarchy [27]. Suppose that the AL spectral
problem and its time evolution part are

EΦ̄ = M̄Φ, M̄ =

(
λ Qn

Rn
1
λ

)
, Ū =

(
Qn

Rn

)
, Φ̄ =

(
φ̄1(n)
φ̄2(n)

)
, (2.1a)

Φ̄t̄s = N̄AL
s Φ̄, N̄AL

s =

(
ĀAL

s B̄AL
s

C̄AL
s D̄AL

s

)
, s ∈ Z, (2.1b)

where E is a shift operator defined as E f (n) = f (n+1), λ is a spectral parameter and independent
of time, Qn = Q(n, t) and Rn = R(n, t) are potential functions, and ĀAL

s , B̄
AL
s ,C̄

AL
s and D̄AL

s are Laurent
polynomials of λ living on Qn, Rn and their shifts. From the discrete zero curvature equation of
(2.1), i.e.

M̄t̄s = (EN̄AL
s )M̄− M̄N̄AL

s , (2.2)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

322

D
ow

nl
oa

de
d 

by
 [

U
T

 P
an

 A
m

er
ic

an
] 

at
 0

7:
20

 2
2 

Ju
ly

 2
01

5 



W. Fu, Z.J. Qiao, J.W. Sun, D.-J. Zhang / Semi-discrete AKNS System

the whole AL hierarchy can be derived and expressed as (a detailed procedure can be found in [25])

Ūt̄s = K̄AL
s = L̄s

(
Qn

−Rn

)
, s ∈ Z, (2.3)

where

L̄ =

(
E 0
0 E−1

)
+

(
−QnE

Rn

)
(E−1)−1(RnE,QnE−1)

+µn

(
−EQn

Rn−1

)
(E−1)−1(Rn,Qn)

1
µn

, (2.4a)

and

L̄−1 =

(
E−1 0

0 E

)
+

(
Qn

−RnE

)
(E−1)−1(RnE−1,QnE)

+µn

(
Qn−1

−ERn

)
(E−1)−1(Rn,Qn)

1
µn

, (2.4b)

with

µn = 1−QnRn. (2.4c)

The first few flows in the hierarchy are

K̄AL
0 =

(
Qn

−Rn

)
, (2.5a)

K̄AL
1 = µn

(
Qn+1

−Rn−1

)
, (2.5b)

K̄AL
−1 = µn

(
Qn−1

−Rn+1

)
. (2.5c)

The sdAKNS hierarchy can be given through combining the AL flows in a suitable way [27].
Define initial flows

K̄0 = K̄AL
0 , (2.6a)

K̄1 =
1
2
(K̄AL

1 − K̄AL
−1). (2.6b)

Then the sdAKNS hierarchy is given by

Ūt̄s = K̄s =

{
L̄ jK̄0, s = 2 j,
L̄ jK̄1, s = 2 j+1,

( j = 0,1, · · ·), (2.7)

where

L̄ = L̄−2I + L̄−1

=

(
E−2+E−1 0

0 E−2+E−1

)
+µn

(
Qn−1−Qn+1E
Rn−1−Rn+1E

)
(E−1)−1(Rn,Qn)

1
µn

+

(
−QnE

Rn

)
(E−1)−1(RnE,QnE−1)−

(
−Qn

RnE

)
(E−1)−1(RnE−1,QnE), (2.8)
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L and L−1 are given in (2.4) and I is the unit operator. The first few flows of the sdAKNS hierarchy
are

K̄0 =

(
Qn

−Rn

)
, (2.9a)

K̄1 =
1
2

µn

(
Qn+1−Qn−1

Rn+1−Rn−1

)
, (2.9b)

K̄2 =

(
Qn+1−2Qn +Qn−1−QnRn(Qn+1 +Qn−1)

−Rn+1 +2Rn−Rn−1 +QnRn(Rn+1 +Rn−1)

)
, (2.9c)

K̄3 =
1
2

µn



(E−E−1)(Qn+1−2Qn +Qn−1)

+Qn+1Qn+2Rn+1−Qn(Qn+1Rn−1−Qn−1Rn+1)

−Qn−2Qn−1Rn−1−Rn(Q2
n+1−Q2

n−1)

(E−E−1)(Rn+1−2Rn +Rn−1)

+Qn−1Rn−2Rn−1 +Rn(Qn+1Rn−1−Qn−1Rn+1)

−Qn+1Rn+1Rn+2−Qn(R2
n+1−R2

n−1)


. (2.9d)

We note that the equations Ūt̄2 = K̄2 and Ūt̄3 = K̄3 respectively correspond to the coupled semi-
discrete nonlinear Schrödinger equation [21] and the coupled semi-discrete modified Korteweg–de
Vries equation [20] in the papers of Tsuchida et al.

2.2. The sdAKNS hierarchy and Lax pairs: revisit

In the sdAKNS hierarchy, for the equation

Ūt̄s = K̄s (2.10)

its Lax pair is expressed as

EΦ̄ = M̄Φ̄, M̄ =

(
λ Qn

Rn
1
λ

)
, (2.11a)

Φ̄t̄s = N̄sΦ̄, N̄s =

(
Ās B̄s

C̄s D̄s

)
, (2.11b)

where (2.11a) is the AL spectral problem (2.1a). Since (2.7) already provided the combinatorial
relation between K̄s and the AL flows {K̄AL

j }, the matrix N̄s can be accordingly written out as com-
binations of {N̄AL

j } and Ās, B̄s, C̄s and D̄s will be expressed through the Laurent polynomials in λ .
However, it is hard to write out explicit form of these polynomials, which will make difficulty in the
consideration continuum limit. In the following, we need to re-derive the sdAKNS hierarchy and
their Lax pairs so that they are ready for considering continuum limits as well as for deriving new
conservation laws.

Let us start from the compatible condition (zero curvature equation)

M̄t̄s = (EN̄s)M̄− M̄N̄s (2.12)

and make use of the Gâteaux derivatives. For the given functions F̄ = F̄(Ū) and Ḡ = Ḡ(Ū),

F̄ ′[G] =
∂

∂ε
F̄(Ū + εḠ)

∣∣
ε=0
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is called the Gâteaux derivative of F̄(Ū) w.r.t. Ū in the direction Ḡ(Ū). It is easy to see that F̄t̄(Ū) =

F̄ ′[Ūt̄ ], from which we can rewrite the zero curvature equation (2.12) as

M̄′[K̄s] = (EN̄s)M̄− M̄N̄s. (2.13)

Now we consider the following equation

M̄′
[
X̄−

(
λ − 1

λ

)2
Ȳ
]
= (EN̄)M̄− M̄N̄, (2.14)

where X̄ = (X̄1, X̄2)
T and Ȳ = (Ȳ1,Ȳ2)

T are vector functions of Ū but independent of λ , and

N̄=

(
Ā B̄

C̄ D̄

)
.

When Ȳ = 0, we assign the following two initial flows

X̄ = K̄0 and X̄ = K̄1,

where K̄0 and K̄1 are defined in (2.6). Correspondingly, we can take

N̄= N̄0 and N̄= N̄1,

respectively. When Ȳ 6= 0, we restrict N̄|Ū=0 = 0 and rewrite (2.14) into

X̄−
(

λ − 1
λ

)2
Ȳ = (λ L̄1−

1
λ

L̄2)

(
B̄

C̄

)
(2.15)

and

Ā=− 1
λ
(E−1)−1(RnE,−Qn)

(
B̄

C̄

)
, (2.16a)

D̄=
1
λ
(E−1)−1(Rn,−QnE)

(
B̄

C̄

)
, (2.16b)

where

L̄1 =

(
−1 0
0 E

)
+

(
−Qn

RnE

)
(E−1)−1(Rn,−QnE), (2.17a)

L̄2 =

(
−E 0
0 1

)
−
(
−QnE

Rn

)
(E−1)−1(RnE,−Qn), (2.17b)

with their inverses

L̄−1
1 =

(
−1 0
0 E−1

)
+

(
Qn

Rn−1

)
(E−1)−1(Rn,Qn)

1
µn

, (2.18a)

L̄−1
2 =

(
−E−1 0

0 1

)
−
(

Qn−1

Rn

)
(E−1)−1(Rn,Qn)

1
µn

. (2.18b)

To solve (2.15), we expand (
B̄

C̄

)
=

(
b̄+

c̄+

)
λ +

(
b̄−

c̄−

)
1
λ
. (2.19)
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Then we from (2.15) have

Ȳ =−L̄1

(
b̄+

c̄+

)
, (2.20a)

X̄ +2Ȳ = L̄1

(
b̄−

c̄−

)
− L̄2

(
b̄+

c̄+

)
, (2.20b)

Ȳ = L̄2

(
b̄−

c̄−

)
, (2.20c)

which gives rise to the relation

X̄ = L̄ Ȳ (2.21)

and (
B̄

C̄

)
= (−λ L̄−1

1 +
1
λ

L̄−1
2 )Ȳ . (2.22)

Here L̄ = L̄− 2I + L̄−1 is given in (2.8), which serves as the recursion operator of the sdAKNS
hierarchy. In fact, (2.21) and (2.14) indicate the following recursive relation

M̄′
[
L̄ Ȳ −

(
λ − 1

λ

)2
Ȳ
]
= (EN̄)M̄− M̄N̄. (2.23)

Repeating such a relation we can reach the form

M̄′
[
L̄ jȲ −

(
λ − 1

λ

)2 j
Ȳ
]
= (EN̄)M̄− M̄N̄, (2.24)

where following (2.22), B̄ and C̄ in matrix N̄ are expressed as(
B̄

C̄

)
=

j

∑
k=1

(
λ − 1

λ

)2( j−k)(
−λ L̄−1

1 +
1
λ

L̄−1
2

)
L̄ k−1Ȳ . (2.25)

Thus, we can respectively take Ȳ = K̄0 and Ȳ = K̄1 in (2.24) as initial flows, and obtain the following
zero curvature representation of the flow K̄s,

M̄′[K̄s] = (EN̄s)M̄− M̄N̄s, s = 0,1, · · · , (2.26)

where the elements of the matrix N̄s are given by(
B̄s

C̄s

)
=

j

∑
k=1

(
λ − 1

λ

)2( j−k)(
−λ L̄−1

1 +
1
λ

L̄−1
2

)
L̄ k−1K̄0, s = 2 j, (2.27a)(

B̄s

C̄s

)
=

j

∑
k=1

(
λ − 1

λ

)2( j−k)(
−λ L̄−1

1 +
1
λ

L̄−1
2

)
L̄ k−1K̄1

+
1
2

(
λ − 1

λ

)2 j(
λQn +

1
λ

Qn−1

λRn−1 +
1
λ

Rn

)
, s = 2 j+1 (2.27b)
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and

Ās =−
1
λ
(E−1)−1(RnE,−Qn)

(
B̄s

C̄s

)
+ Ā(0)

s , (2.28a)

D̄s =
1
λ
(E−1)−1(Rn,−QnE)

(
B̄s

C̄s

)
+ D̄(0)

s , (2.28b)

Ā(0)
s =−D̄(0)

s =

{ 1
2(λ −

1
λ
)s, s = 2 j,

1
4(λ −

1
λ
)s−1(λ 2− 1

λ 2 ), s = 2 j+1,
(2.28c)

for j = 0,1, · · · . The first three N̄s are listed in Appendix A.
We note that N̄s obeys the following boundary condition

N̄s|Ū=0 =

(
Ā(0)

s 0
0 D̄(0)

s

)
(2.29)

where Ā(0)
s and D̄(0)

s are given in (2.28c). In our procedure N̄s is uniquely determined by the above
boundary condition. This is guaranteed by the following fact (cf. [25, 29]).

Proposition 2.1. Suppose that X̄ = (X̄1, X̄2)
T is a vector function of Ū but independent of λ and N̄

is a 2×2 matrix Laurent polynomial in λ living on Ū. Then the matrix equation

M̄′[X̄ ] = (EN̄)M̄− M̄N̄, N̄|Ū=0 = 0 (2.30)

has only zero solution X̄ = 0, N̄ = 0.

We note that N̄s derived from Sec.2.1 as combinations of {N̄AL
j } also satisfies (2.29). Thus two

N̄s are same in light of above proposition.

3. Conservation laws

3.1. Conservation laws: Trivial in continuum limit

Infinitely many conservation laws of an integrable system can be constructed from its Lax pair
(cf. [22]), and this approach was also generalized to semi-discrete case (e.g. [20, 21, 24]). In this
subsection, we will use the same approach to construct trivial (in terms of continuum limit) conser-
vation laws of the sdAKNS hierarchy.

We begin with the spectral problem of the sdAKNS hierarchy, i.e. the AL spectral problem

Eφ̄1 = λ φ̄1 +Qnφ̄2, (3.1a)

Eφ̄2 = Rnφ̄1 +
1
λ

φ̄2. (3.1b)

Setting ω̄ = φ̄2
φ̄1

, we arrive at the discrete Riccati equation [24]

λEω̄ =
1
λ

ω̄−Qnω̄Eω̄ +Rn, (3.2)

which is solved by

ω̄ =
∞

∑
j=1

ω̄
( j)

λ
−2 j+1, (3.3)
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with

ω̄
(1) = Rn−1, ω̄

(2) = Rn−2, (3.4a)

ω̄
( j+1) = E−1

ω̄
( j)−Qn−1

j−1

∑
k=1

ω̄
(k)E−1

ω̄
( j−k), j = 2,3, · · · . (3.4b)

From the Lax pair (2.11) we have

(E−1)(ln φ̄1) = ln(1+λ
−1Qnω̄), (ln φ̄1)ts = Ās + B̄s ω̄,

which provides a formal conservation law[
ln(1+λ

−1Qnω̄)
]

t̄s
= (E−1)(Ās + B̄s ω̄). (3.5)

Then, for the equation Ūt̄s = K̄s in the sdAKNS hierarchy, with corresponding Ās and B̄s in the above
formula, we can expand (3.5) in terms of λ 2 and get

∂t̄s

∞

∑
j=1

σ̄
( j)

λ
−2 j = (E−1)

∞

∑
j=1

J̄ ( j)
λ
−2 j. (3.6)

The coefficients of λ−2 j provide the infinitely many conservation laws for the equation Ūt̄s = K̄s:

∂t̄s σ̄
( j) = (E−1)J̄ ( j) j = 1,2, · · · . (3.7)

However, under the continuum limit given in [27], all of them go to the first conservation law (i.e.
j = 1 in (B.13)) of the continuous case (we will show this in Proposition 4.4). In other words, such
infinitely many conservation laws are trivial in terms of the continuum limit.

3.2. Conservation laws: Meaningful in continuum limit

We need to derive new forms of the conservation laws so that they are meaningful in the continuum
limit. To do that, let us introduce

Ω̄(z) =
1
λ

ω̄(λ ), (3.8)

where λ and z are related through

λ =

√
1+ z

z
. (3.9)

Rewriting the discrete Riccati equation (3.2) in terms of Ω̄ and z, we obtain

1
z

Ω̄ = (E−1−1)Ω̄−
(

1+
1
z

)
Qn−1Ω̄E−1

Ω̄+Rn−1. (3.10)

Inserting the following expansion

Ω̄(z) =
∞

∑
j=1

Ω̄
( j)z j (3.11)
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yields

Ω̄
(1) = Rn−1, Ω̄

(2) = Rn−2(1−Qn−1Rn−1)−Rn−1, (3.12a)

Ω̄
( j+1) = (E−1−1)Ω̄( j)−Qn−1

j−1

∑
k=1

Ω̄
(k)E−1

Ω̄
( j−k)−Qn−1

j

∑
k=1

Ω̄
(k)E−1

Ω̄
( j+1−k) (3.12b)

for j = 2,3, · · · . The first few Ω( j) are

Ω̄
(1) = Rn−1, (3.13a)

Ω̄
(2) = Rn−2(1−Qn−1Rn−1)−Rn−1, (3.13b)

Ω̄
(3) = Rn−1 +2Rn−2(Qn−1Rn−1−1)+Qn−1R2

n−2(Qn−1Rn−1−1)

+Rn−3(Qn−2Rn−2−1)(Qn−1Rn−1−1). (3.13c)

Meanwhile, the formal conservation law (3.5) can be written as[
ln(1+QnΩ̄)

]
t̄s
= (E−1)( ¯As + B̄sΩ̄), (3.14)

where

¯As(z) = Ās(λ )
∣∣∣
λ=
√

1+z
z

, B̄s(z) = λ B̄s(λ )
∣∣∣
λ=
√

1+z
z

. (3.15)

Note that we have expansions

ln(1+QnΩ̄) =
∞

∑
j=1

ρ̄
( j)z j, (3.16a)

¯As + B̄sΩ̄ = ¯A
(0)

s +
∞

∑
j=1

J̄( j)z j, (3.16b)

where ¯A
(0)

s = Ā(0)
s |

λ=
√

1+z
z

and Ā(0)
s is defined by (2.28c). Then, comparing the coefficients of z j on

the both sides of (3.14), we obtain infinitely many conservation laws

∂t̄s ρ̄
( j) = (E−1)J̄( j)

s , j = 1,2, · · · (3.17)

for the equation Ūt̄s = K̄s. Explicit formulae of ρ̄( j) can be given with the help of the following
proposition (see Proposition 2 in [28]).

Proposition 3.1. The following expansion holds,

ln
(

1+
∞

∑
i=1

yizi
)
=

∞

∑
j=1

h j(y)z j, (3.18a)

where

h j(y) = ∑
||ααα||= j

(−1)|ααα|−1(|ααα|−1)!
yααα

ααα!
, (3.18b)
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and

y = (y1,y2, · · ·), ααα = (α1,α2, · · ·), αi ∈ {0,1, · · ·}, (3.18c)

yααα =
∞

∏
i=1

yαi
i , ααα! =

∞

∏
i=1

(αi!), |ααα|=
∞

∑
i=1

αi, ||ααα||=
∞

∑
i=1

iαi. (3.18d)

The first few of {h j(y)} are

h1(y) = y1, (3.19a)

h2(y) =−
1
2

y2
1 + y2, (3.19b)

h3(y) =
1
3

y3
1− y1y2 + y3, (3.19c)

h4(y) =−
1
4

y4
1 + y2

1y2− y1y3−
1
2

y2
2 + y4. (3.19d)

For convenience, we call {h j(y)} h-polynomials and we will see that they play quite helpful
roles in our investigation.

With the help of h-polynomials, {ρ̄( j)} are expressed as

ρ̄
( j) = h j(y), j = 1,2, · · · , (3.20)

with yi = QnΩ̄(i). The first two ρ̄( j) are

ρ̄
(1) = QnRn−1, (3.21a)

ρ̄
(2) = − 1

2
Qn
[
2Rn−2(Qn−1Rn−1−1)+Rn−1(QnRn−1 +2)

]
. (3.21b)

It is known that all the equations in the sdAKNS hierarchy share the same conserved densities,
while the associated fluxes depend on the time part of the Lax pairs.

The infinitely many conservation laws are not trivial in the continuum limit (see Sec.4.4).

3.3. Conservation laws: Combinatorial relation

In this subsection, we prove that each conserved density ρ̄( j) is a combination of certain conserved
densities {σ̄ (i)} and the same combinatorial relation holds for the corresponding conservation laws.
To find this relation we first prove the following lemma.

Lemma 3.1. If
∞

∑
j=1

h j(y)z j =
∞

∑
s=1

hs(x)
(

∞

∑
k=1

(−1)k−1zk
)s

, (3.22)

where x = (x1,x2, · · ·), then we have

h j(y) =
j

∑
s=1

(−1) j−sCs−1
j−1hs(x), j = 1,2, · · · , (3.23)

where

Cn
m =

m!
n!(m−n)!

, m≥ n.
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Proof. First, expanding the r.h.s. of (3.22) in terms of z and comparing the coefficients of z j, we
find

h1(y) = h1(x), (3.24a)

h2(y) = h2(x)−h1(x), (3.24b)

h3(y) = h3(x)−2h2(x)+h1(x), (3.24c)

h4(y) = h4(x)−3h3(x)+3h2(x)−h1(x), (3.24d)

which cope with the formula (3.23) for j = 1,2,3,4. Next, let us go to prove that (3.23) holds for
generic j. This is equivalent to prove(

∞

∑
k=1

(−1)k−1zk
)s

=
∞

∑
j=s

(−1) j−sCs−1
j−1z j. (3.25)

Based on (3.24), let us suppose that (3.25) is true for s≤ i. Then, when s = i+1 we find(
∞

∑
k=1

(−1)k−1zk
)i+1

=

(
∞

∑
k=1

(−1)k−1zk
)(

∞

∑
k=1

(−1)k−1zk
)i

=

(
∞

∑
k=1

(−1)k−1zk
)

∞

∑
l=i

(−1)l−iCi−1
l−1zl

=
∞

∑
j=i+1

(−1) j−i−1
( j−1

∑
l=i

Ci−1
l−1

)
z j.

Then, by the combinatorial formula

m

∑
k=0

Cn
n+k = Cn+1

n+m+1,

we immediately obtain (
∞

∑
k=1

(−1)k−1zk
)i+1

=
∞

∑
j=i+1

(−1) j−(i+1)Ci
j−1 z j,

which means (3.25) is true for s = i+1. Thus, with the help of mathematical inductive method we
complete the proof.

Now, noting that employing h-polynomials {h j(y)} we have ρ̄( j) = h j(y) and σ̄ ( j) = h j(x)
where yi = QnΩ̄(i) and xi = Qnω̄(i), we immediately reach the following relation for ρ̄( j) and σ̄ ( j).

Proposition 3.2. The conserved densities ρ̄( j) and σ̄ ( j) enjoy the following combinatorial relation,

ρ̄
( j) =

j

∑
s=1

(−1) j−sCs−1
j−1σ̄

(s), j = 1,2, · · · . (3.26)

4. Continuum limits

Since the integrable discretizations usually break the original dispersion relations, it is not easy,
in general, to give a uniform continuum limit which maps the discrete integrable systems together
with their integrability characteristics to the continuous counterparts (cf. [12,15–18,30]). In [27] we
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have presented a unform continuum limit which sends the whole sdAKNS hierarchy to the AKNS
hierarchy. In the following we use the scheme to investigate first the Lax pairs and then conservation
laws of the sdAKNS hierarchy. The corresponding results of the continuous AKNS hierarchy are
listed in Appendix B as reference.

4.1. Plan

Our plan for the continuum limit runs below [27]:

• Replacing Qn and Rn with hqn and hrn, where h is the real spacing parameter.
• Let n→ ∞ and h→ 0 such that nh finite.
• Define continuous variable x = x0+nh. Then for a scalar function, for example, qn, one has

qn+ j = q(x+ jh). For convenience we take x0 = 0.
• Define temporal coordinate relation ts = hst̄s for s = 0,1, · · · .
• Continuous spectral parameter η is defined by λ = ehη .

Here we remark the following. The above continuum limit scheme means that the discretization
from the AKNS hierarchy to the sdAKNS hierarchy is direct. This is different from those discrete
systems obtained from the so-called Miwa transformation [14]. Miwa’s transformation led to a
discretization for the famous Sato theory [5–9]. In that approach discrete independent variables are
directly added into the continuous dispersion relation, which essentially breaks the original spatial
and temporal independence. As a consequence, when taking continuum limit to recover a integrable
continuous nonlinear system from a discrete system obtained through the discrete Sato theory, one
needs to allocate independent variables so that the new independent variables coincide with the
desired continuous dispersion relation.

4.2. Hierarchy

In Ref. [27] we have shown that in the above continuum limit the whole sdAKNS hierarchy (2.7)
goes to the continuous AKNS hierarchy (B.5). Let us briefly recall these results.

In the continuum limit described in Sec.4.1, it can be shown that

K̄0 = K0h+O(h2), (4.1a)

K̄1 = K1h2 +O(h3), (4.1b)

and

L̄ = L2h2 +O(h3). (4.2)

Then, from the recursive structure of the sdAKNS hierarchy (2.7), the continuum limits for the flows
are

K̄s = Kshs+1 +O(hs+2), s = 0,1, · · · , (4.3)

and at the level of equations we have the following.

Proposition 4.1. Under the continuum limit described in Sec.4.1, we have

Ūt̄s− K̄s = (uts−Ks)hs+1 +O(hs+2), s = 0,1, · · · . (4.4)
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4.3. Lax pairs

Based on the continuum limit designed in Sec.4.1, it is easy to find that the continuum limit of the
spectral problem (2.11a) is

EΦ̄− M̄Φ̄ = (Φx−MΦ)h+O(h2). (4.5)

To investigate the relations in the continuum limit between the time parts of the Lax pairs (B.1) and
(2.11), we rewrite (B.3b) as the following form:(

Bs

Cs

)
= σ3

j

∑
k=1

(2η)2( j−k)(L+2η)L2(k−1)
(

q
−r

)
, s = 2 j, (4.6a)(

Bs

Cs

)
= σ3

j

∑
k=1

(2η)2( j−k)(L+2η)L2k−1
(

q
−r

)
+(2η)2 j

(
q
r

)
, s = 2 j+1 (4.6b)

for j = 0,1, · · · . A direct calculation yields

λ − 1
λ

= 2ηh+O(h2), −λ L̄−1
1 +

1
λ

L̄−1
2 = (L+2η)h+O(h2). (4.7)

Then, from the expression (2.27) we have(
B̄s

C̄s

)
=

[
σ3

j

∑
k=1

(2η)2( j−k)(L+2η)L2(k−1)
(

q
−r

)]
h2 j +O(h2 j+1), s = 2 j,

(
B̄s

C̄s

)
=

[
σ3

j

∑
k=1

(2η)2( j−k)(L+2η)L2k−1
(

q
−r

)

+(2η)2 j
(

q
r

)]
h2 j+1 +O(h2 j+2), s = 2 j+1

for j = 0,1, · · · , namely (
B̄s

C̄s

)
=

(
Bs

Cs

)
hs +O(hs+1), s = 0,1, · · · . (4.8)

Next, substituting (4.8) into (2.28) we find

Ās = Ashs +O(hs+1), D̄s = Dshs +O(hs+1), s = 0,1, · · · . (4.9)

Therefore, from the relations (4.8) and (4.9) we conclude that

N̄s = Nshs +O(hs+1), s = 0,1, · · · . (4.10)

As a result, we have the following.

Proposition 4.2. Under the continuum limit described in Sec.4.1, for Lax pairs we have

EΦ̄− M̄Φ̄ = (Φx−MΦ)h+O(h2), (4.11a)

Φ̄t̄s− N̄sΦ̄ = (Φts−NsΦ)hs +O(hs+1), s = 0,1, · · · . (4.11b)
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4.4. Conservation laws

In this part we will investigate continuum limit of the infinitely many conservation laws obtained in
Sec.3 for the sdAKNS hierarchy (2.7). We need to examine the relations between Ω̄( j) and ω( j), Ω̄

and ω , the Riccati equations (3.10) and (B.7), the formal conservation laws (3.14) and (B.11), and
the infinitely many conservation laws (3.17) and (B.13), respectively.

First, for the relation between Ω̄( j) and ω( j), we have the following result.

Lemma 4.1. Under the continuum limit described in Sec.4.1, we have

Ω̄
( j) = ω

( j)h j +O(h j+1), j = 1,2, · · · , (4.12)

where Ω̄ and ω( j) are defined in (3.12) and (B.9), respectively.

Proof. We use mathematical inductive method. First, for j = 1,2, we find that

Ω̄
(1) = Rn−1 = rh+O(h2),

Ω̄
(2) = Rn−2(1−Qn−1Rn−1)−Rn−1 = rxh2 +O(h3),

which means the relation (4.12) holds for j = 1,2. Then we suppose

Ω̄
(i) = ω

(i)hi +O(hi+1)

is true for any i≤ j. Then, from the recursive relation (3.12b) we find

Ω̄
( j+1) = (E−1−1)Ω̄( j)−Qn−1

j−1

∑
k=1

Ω̄
(k)E−1

Ω̄
( j−k)−Qn−1

j

∑
k=1

Ω̄
(k)E−1

Ω̄
( j+1−k)

=
(
−ω

( j)
x −q

j−1

∑
k=1

ω
(k)

ω
( j−k)

)
h( j+1)+O(h j+2)

= ω
( j+1)h( j+1)+O(h j+2),

where the last equality coincides with the recursive relation (B.9b). Therefore (4.12) holds for any
j ≥ 1.

Now we come to the relation between Ω̄ and ω . Let us go back to the expansion (3.11), i.e.

Ω̄(z) =
∞

∑
j=1

Ω̄
( j)z j. (4.13)

Noting that

z =
1

λ 2−1
= (2η)−1h−1 +O(1), (4.14)

and inserting (4.12) and (4.14) into (4.13), we have

Ω̄(z) =
∞

∑
j=1

Ω̄
( j)z j =

∞

∑
j=1

ω
( j)(2η)− j +O(h), (4.15)

namely,

Ω̄ = ω +O(h). (4.16)

This gives the relation between Ω̄ and ω .
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Next, let us look at the relation between the Riccati equations (3.10) and (B.7). Substituting
(4.16) into the Riccati equation (3.10) yields

1
z

Ω̄−
[
(E−1−1)Ω̄−

(
1+

1
z

)
Qn−1Ω̄E−1

Ω̄+Rn−1

]
=
[
2ηω− (ωx−qω

2 + r)
]
h+O(h2), (4.17)

which means the Riccati equation (3.10) goes to the continuous (B.7) in the continuum limit.
We also need to check the formal conservation laws (3.14) and (B.11). For the l.h.s. of (3.14),

by using (4.16) it is easy to see that

ln(1+QnΩ̄) = (qω)h+O(h2). (4.18)

Meanwhile, from the relations (3.15) and (4.10) we immediately reach

¯As = Ahs +O(hs+1), B̄s = Bhs +O(hs+1), (4.19)

which provides

¯As + B̄sΩ̄ = (As +Bsω)hs +O(hs+1). (4.20)

Thus, for the relation of the formal conservation laws of (3.14) and (B.11), we have the following.

Lemma 4.2. Under the continuum limit described in Sec.4.1, we have[
ln(1+QnΩ̄

]
t̄s
− (E−1)( ¯As + B̄sΩ̄)

=
[
(qω)ts− (As +Bsω)x

]
hs+1 +O(hs+2), (4.21)

which describes the relation of the two formal conservation laws.

Finally, we focus on the continuum limits of the infinitely many conservation laws (3.17), i.e.

∂t̄s ρ̄
( j) = (E−1)J̄( j)

s , j = 1,2, · · · . (4.22)

The common conserved densities ρ̄( j) are determined by (3.16a) with (3.20) and yi
.
= QnΩ̄(i). To

investigate the continuum limit of ρ̄( j), we introduce degrees of functions (cf. [27]).

Definition 4.1. Under the plan described in Sec.4.1, a function F̄(Ū) can be expanded as a series
of h. The order of leading term of the series is called the degree of F̄(Ū), denoted by deg F̄ .

For example,

degQn = 1, degΩ̄
(i) = i, degyi = i+1, deg t̄s = s, degz =−1.

Now, looking at the definition (3.18b) of h-polynomials h j(y) (as examples see (3.19)), since
degyi = i+1, we can find that degh j(y) = degy j = j+1 and

lim
h→0

h j(y)
h j+1 = lim

h→0

y j

h j+1 .

Since y j
.
= QnΩ̄( j) = qω( j)h j+1 +O(h j+2), we immediately find

ρ̄
( j) = h j(y) = qω

( j)h j+1 +O(h j+2), (4.23)

which means in the continuum limit we have ρ̄( j) → ρ( j) = qω( j) and deg ρ̄( j) = j + 1. Next, to
balance the degrees of both sides of (4.22), deg J̄( j)

s must be j+ s. Therefore, we can suppose J̄( j)
s to
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be the following form

J̄( j)
s =W ( j)

s h j+s +O(h j+s+1). (4.24)

This means, in light of (4.14), we have

J̄( j)
s z j =W ( j)

s (2η)− jhs +O(hs+1), (4.25)

and further, from (3.16b) we get

¯As + B̄sΩ̄− ¯A
(0)

s =
∞

∑
j=1

J̄( j)
s z j =

(
∞

∑
j=1

W ( j)
s (2η)− j

)
hs +O(hs+1).

On the other hand, from (4.20) and (B.12) we find

¯As + B̄sΩ̄− ¯A
(0)

s =
[
As +Bsω−

1
2
(2η)s]hs +O(hs+1)

=

(
∞

∑
j=1

J( j)
s (2η)− j

)
hs +O(hs+1).

Thus, comparing the term of (2η)− j immediately yields W ( j)
s = J( j)

s , which gives rise to

J̄( j)
s = J( j)

s h j+s +O(h j+s+1). (4.26)

Now we can sum up the discussion of this subsection.

Proposition 4.3. Under the continuum limit described in Sec.4.1, for the infinitely many conserva-
tion laws of the sdAKNS hierarchy we have

ρ̄
( j) = ρ

( j)h j+1 +O(h j+2), (4.27a)

J̄( j)
s = J( j)

s h j+s +O(h j+s+1), (4.27b)

and

∂t̄s ρ̄
( j)− (E−1)J̄( j)

s = (∂tsρ
( j)−∂xJ( j)

s )h j+s+1 +O(h j+s+2), (4.28)

for s = 0,1, · · · and j = 1,2, · · · , which describe the relation of the two sets of infinitely many con-
servation laws.

At the end of this part, let us take a look at the continuum limit of the conserved densities
σ̄ ( j) = h j(x) with xi

.
= Qnω̄(i), which were derived in Sec.3.1 (also see [24]). Obviously,

ω̄
(1) = Rn−1 = hr+O(h2), ω̄

(2) = Rn−2 = hr+O(h2),

which means deg ω̄(1) = deg ω̄(2) = 1. Then, from the recursive structure (3.4) we find

deg ω̄
( j) ≡ 1, j = 1,2, · · · ,

and

ω̄
( j) = hr+O(h2), j = 1,2, · · · .
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Thus we get

x j = qrh2 +O(h3), j = 1,2, · · · ,

and then from the definition of h j(x) we obtain

h j(x)≡ qrh2 +O(h3), j = 1,2, · · · .

Proposition 4.4. All the conserved densities σ̄ ( j) = h j(x) with xi
.
= Qnω̄(i), which are derived in

Sec.3.1 (also see [24]) for the AL hierarchy as well as for the sdAKNS hierarchy, are trivial in the
sense that under the continuum limit described in Sec.4.1

σ̄
( j) ≡ qrh2 +O(h3), j = 1,2, · · · .

In other words, in our continuum limit, all of the conserved densities {σ̄ ( j)} go to ρ(1) = qr, which
is the first conserved density of the AKNS hierarchy.

5. Conclusions

In this paper we have investigated the sdAKNS hierarchy, and specifically their Lax pairs and
infinitely many conservation laws, as well as the corresponding continuum limits. The Lax pairs and
conservation laws of the sdAKNS hierarchy were rederived so that they cope with their continuous
counterparts in continuum limit. We performed a uniform continuum limit in which the sdAKNS
hierarchy, their Lax pairs and infinitely many conservation laws go to their continuous counter-
parts of the AKNS system. In this continuum limit scheme the spatial and temporal independence
is kept. The same scheme has been also used to explain the structure deformation of symmetry
algebra [27]. Such structure deformation of Lie algebras usually happens in semi-discrete cases and
suitable continuum limit schemes are useful in the explanation of the structure deformation (see
also the example of the semi-discrete Kadomtsev–Petviashvili hierarchy [10]). For the sdAKNS
hierarchy, Hamiltonian structures and their continuum limit will be investigated later.

Finally, a further comment is given for conservation laws. The known infinitely many conser-
vation laws derived in [24] for the AL hierarchy as well as for the sdAKNS hierarchy are trivial
in terms the continuum limit. We have shown that all the conserved densities σ̄ ( j) go to the same
ρ(1) = qr which is the first conserved density of the AKNS hierarchy. For the sdAKNS hierarchy, we
have given new forms of the conservation laws which agree with their continuous counterparts. They
are related to those trivial ones through explicit combinatorial relation. We made use of degrees of
functions to investigate continuum limits and h-polynomials also play quite helpful roles in our
investigation.
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Appendix A. The first three N̄s

Here we give the first three of N̄s:

N̄0 =

( 1
2 0
0 −1

2

)
, (A.1a)

N̄1 =
1
2

( 1
2 λ 2−QnRn−1− 1

2 λ−2 Qnλ +Qn−1λ−1

Rn−1λ +Rnλ−1 −1
2 λ 2−Qn−1Rn +

1
2 λ−2

)
, (A.1b)

N̄2 =

( 1
2 λ 2− (1+QnRn−1)+

1
2 λ−2 Qnλ −Qn−1λ−1

Rn−1λ −Rnλ−1 −1
2 λ 2 +(1+Qn−1Rn)− 1

2 λ−2

)
. (A.1c)

Appendix B. Results of the AKNS hierarchy

B.1. The AKNS hierarchy and Lax pairs

The AKNS spectral problem coupled with a time evolution part reads [1]

Φx = MΦ, M =

(
η q
r −η

)
, u =

(
q
r

)
, Φ =

(
φ1

φ2

)
, (B.1a)

Φts = NsΦ, Ns =

(
As Bs

Cs −As

)
, s = 0,1,2 · · · , (B.1b)

where η is a spectral parameter independent of time, q = q(x, t) and r = r(x, t) are potential func-
tions and As,Bs and Cs are polynomials of η depending on q,r and their derivatives. The sub-s is
used to indicate the s-th equation in the AKNS hierarchy. To obtain the AKNS hierarchy, starting
from the zero curvature equation

∂tsM−∂xNs +[M,Ns] = 0, s = 1,2, · · · , (B.2)

where [M,Ns] = MNs−NsM, one can expand(
Bs

Cs

)
=

s

∑
k=1

(
bk

ck

)
(2η)s−k

and then rewrite (B.2) as the following,

uts = Ks = Ls
(

q
−r

)
, (B.3a)(

Bs

Cs

)
= σ3

s

∑
k=1

Lk−1
(

q
−r

)
(2η)s−k, (B.3b)

As =−∂
−1
x (r,−q)

(
Bs

Cs

)
+

1
2
(2η)s, (B.3c)

where L is the recursion operator defined as

L =−σ∂x−2σ3

(
q
r

)
∂
−1
x (r,q), σ3 =

(
1 0
0 −1

)
. (B.4)
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(B.3a) is referred to as the AKNS hierarchy. The hierarchy can start from s = 0 by defining K0 =

(q,−r)T . Thus, the AKNS hierarchy is expressed as

uts = Ks = Ls
(

q
−r

)
, s = 0,1, · · · . (B.5)

(B.1) is called the Lax pair of the hierarchy (B.5).

B.2. Conservation laws

The infinitely many conservation laws of the AKNS hierarchy can be constructed from their Lax
pairs (cf. [22]). Starting from the AKNS spectral problem (B.1a), i.e.

φ1,x = ηφ1 +qφ2, (B.6a)

φ2,x = rφ1−ηφ2, (B.6b)

and setting ω = φ2
φ1

, we are able to obtain a Riccati equation

2ηω =−ωx−qω
2 + r, (B.7)

which is solved by a series-form

ω =
∞

∑
j=1

ω
( j)(2η)− j (B.8)

with

ω
(1) = r, ω

(2) =−rx, (B.9a)

ω
( j+1) =−ω

( j)
x −q

j−1

∑
k=1

ω
(k)

ω
( j−k), j = 2,3, · · · . (B.9b)

Next, from the Lax pair (B.1) one can find

(lnφ2)x = η +qω, (lnφ2)ts = As +Bsω, (B.10)

where As and Bs are expressed by (B.3c) and (B.3b), respectively. The compatibility condition
(lnφ2)x,ts = (lnφ2)ts,x leads to a formal conservation law

(qω)ts = (As +Bsω)x. (B.11)

To derive infinitely many conservation laws, one needs to insert (B.8) into (B.11) and expand (B.11)
into a series in terms of 2η . After expansion one finds

As +Bsω =
1
2
(2η)s +

∞

∑
j=1

J( j)
s (2η)− j, (B.12)

where the term 1
2(2η)s comes from As|u=0 and contributes nothing to the conservation laws. The

coefficients of every different power of 2η in (B.11) compose the infinitely many conservation laws

∂tsρ
( j) = ∂xJ( j)

s , j = 1,2, · · · . (B.13)
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We note that the infinitely many conserved densities {ρ( j)} are shared by all the equations in the
AKNS hierarchy. The first three of the conserved densities are

ρ
(1) = qr, ρ

(2) =−qrx, ρ
(3) = qrxx−q2r2. (B.14)

The associated fluxes depend on which equation is considered in the hierarchy.
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and an infinite number of conservation laws, Prog. Theor. Phys. 53 (1975) 419–436.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

340

D
ow

nl
oa

de
d 

by
 [

U
T

 P
an

 A
m

er
ic

an
] 

at
 0

7:
20

 2
2 

Ju
ly

 2
01

5 



W. Fu, Z.J. Qiao, J.W. Sun, D.-J. Zhang / Semi-discrete AKNS System

[23] Y.B. Zeng and S.R. Wojciechowski, Restricted flows of the Ablowitz–Ladik hierarchy and their contin-
uous limits, J. Phys. A: Math. Gen. 28 (1995) 113–134.

[24] D.J. Zhang and D.Y. Chen, The conservation laws of some discrete soliton systems, Chaos Solitons
Fractals 14 (2002) 573–579.

[25] D.J. Zhang and D.Y. Chen, Hamiltonian structure of discrete soliton systems, J. Phys. A: Math. Gen.
35 (2002) 7225–7241.

[26] D.J. Zhang and S.T. Chen, Symmetries for the Ablowitz–Ladik hierarchy: Part I. Four-potential case,
Stud. Appl. Math. 125 (2010) 393–418.

[27] D.J. Zhang and S.T. Chen, Symmetries for the Ablowitz–Ladik hierarchy: Part II. Integrable discrete
nonlinear Schrödinger equations and discrete AKNS hierarchy, Stud. Appl. Math. 125 (2010) 419-443.

[28] D.J. Zhang, J.W. Cheng and Y.Y. Sun, Deriving conservation laws for ABS lattice equations from Lax
pairs, J. Phys. A: Math. Theor. 46 (2013) 265202.

[29] D.J. Zhang, T.K. Ning, J.B. Bi and D.Y. Chen, New symmetries for the Ablowitz–Ladik hierarchies,
Phys. Lett. A 359 (2006) 458–466.

[30] T. Zhou, Z.N. Zhu and P. He, A fifth order semidiscrete mKdV equation, Sci. China Math. 56 (2013)
123–134.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

341

D
ow

nl
oa

de
d 

by
 [

U
T

 P
an

 A
m

er
ic

an
] 

at
 0

7:
20

 2
2 

Ju
ly

 2
01

5 


