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In a recent paper@Zhijun Qiao and Ruguang Zhou, Phys. Lett. A235, 35 ~1997!#,
the amazing fact was reported that a discrete and a continuous integrable system
share the samer -matrix with the interesting property of being nondynamical. Now,
we present three further pairs of different continuous integrable systems sharing the
samer -matrix again being nondynamical. The first pair is the finite-dimensional
constrained system~FDCS! of the famous AKNS hierarchy and the Dirac hierar-
chy; the second pair is the FDCS of the well-known geodesic flows on the ellipsoid
and the Heisenberg spin chain hierarchy; and the third pair is the FDCS of one
hierarchy studied by Xianguo Geng@Phys. Lett. A162, 375 ~1992!# and another
hierarchy proposed by Zhijun Qiao@Phys. Lett. A192, 316 ~1994!#. All those
FDCSs possess Lax representations and from the viewpoint ofr -matrix can be
shown to be completely integrable in Liouville’s sense. ©1998 American Insti-
tute of Physics.@S0022-2488~98!02506-7#

I. INTRODUCTION

The well-known nonlinearization method1 is a powerful tool to generate completely integrab
finite-dimensional Hamiltonian systems~CIFDHSs! from the eigenvalue problems or Lax pairs
nonlinear evolution equations~NLEEs!. With the help of this method many new CIFDHSs ha
been successively found, and solutions to NLEEs have been given by involutive or para
representations.2–12 The r -matrix13 method is quite an effective approach to the Lie–Pois
structure in 111-dimensional space,14,15providing fundamental commutator relations in the qua
tum inversing scattering.16 Recently, the study of CIFDHSs admitting anr -matrix has already
received attention.17–22It has been shown thatr -matrices play a very important part in proving th
integrability of CIFDHSs. Besides, the Lax matrix associated with ther -matrix of a CIFDHS can
be applied for obtaining algebraic–geometric solutions of soliton equations or NLEEs.23

In a recent paper,24 we reported an interesting and surprising result: a discrete and a con
ous integrable system possess the same nondynamicalr -matrix being independent from the dy
namical variablesp,q. The question of whether there are other pairs of continuous or dis
finite-dimensional integrable systems sharing the samer -matrix which should be nondynamica
arises. In the present paper, on the basic idea of Ref. 24 we have considered a wide cla
32 spectral problems and finally succeeded in finding three other pairs of different contin
integrable systems with the common nondynamicalr -matrix. The first pair is formed by the
finite-dimensional constrained system~FDCS! of the famous AKNS and Dirac hierarchies; th
second pair is formed by the FDCS of the well-known geodesic flow on the ellipsoid an
Heisenberg spin chain hierarchy; while the third pair consists of the FDCS of a hierarchy s
by Xianguo Geng7 and a hierarchy proposed by Zhijun Qiao.11 All of these FDCSs possess La
representations, and by using ther -matrix approach can be shown to be completely integrabl
Liouville’s sense.

a!Electronic mail: qiaozj@sxx0.math.pku.edu.cn
b!Electronic mail: strampp@hrz.uni-kassel.de
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Before displaying these results, let us first introduce some basic symbols and notation
(R2N,dp∧dq) stand for the standard symplectic structure in the Euclidic spaceR2N5$(p,q)up
5(p1 ,...,pN), q5(q1 ,...,qN)%, wherepi ,qi ( i 51,...,N) are N pairs of canonical coordinates
The standard inner product inRN will be denoted bŷ •,•& and the Poisson bracket of two Hami
tonian functionsF,G is given through25

$F,G%5(
i 51

N S ]F

]qi

]G

]pi
2

]F

]pi

]G

]qi
D5 K ]F

]q
,

]G

]p L 2 K ]F

]p
,

]G

]q L .

With N arbitrary distinct constantsl1 ,...,lN we form the diagonal matrixL5diag(l1,...,lN),
while l, m are used for two different spectral parameters. ByC`(R) we denote the set of al
functions on real fieldR being infinitely many times differentiable. Finally,x stands for the spatia
continuous variable.

II. THE CONSTRAINED AKNS AND DIRAC „D… SYSTEM

We consider the following two 232 traceless Lax matrices:

LAKNS5LAKNS~l!5S 1 0

0 21D 1(
j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D[S AAKNS~l! BAKNS~l!

CAKNS~l! 2AAKNS~l!
D ,

~1!

LD5LD~l!5S 0 1

21 0D 1(
j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D[S AD~l! BD~l!

CD~l! 2AD~l!
D . ~2!

Let us choose two 232 matricesMAKNS andMD :

MAKNS5S l 2^q,q&

^p,p& 2l
D , ~3!

MD5S ^p,q& l1 1
2 ~^p,p&2^q,q&!

2l1 1
2 ~^p,p&2^q,q&! 2^p,q&

D . ~4!

Then we have the following.
Theorem 1: The Lax equations

Lx
AKNS5@MAKNS ,LAKNS#, ~5!

Lx
D5@MD ,LD#, ~6!

respectively describe the following finite-dimensional Hamiltonian systems~FDHSs! (HAKNS) and
(HD),

~HAKNS!:H qx52^q,q&p1Lq5
]HAKNS

]p
,

px5^p,p&q2Lp52
]HAKNS

]q
;

~7!

~HD!:H qx5^p,q&q1 1
2 ~^p,p&2^q,q&!p1Lp5

]HD

]p
,

px52^p,q&p2 1
2 ~^p,p&2^q,q&!q2Lq52

]HD

]q
,

~8!

with Hamiltonian functions
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HAKNS5^Lq,p&2 1
2 ^p,p&^q,q&, ~9!

HD5 1
2 ~^Lp,p&1^Lq,q&!1 1

2 ~^p,q&22^q,q&^p,p&!1 1
8 ~^p,p&1^q,q&!2. ~10!

Proof: By direct calculation.
Through setting

u52^q,q&, v5^p,p&, ~11!

Eq. ~7! becomes

qjx5l jqj1upj , j 51,...,N,
~12!

pjx5vqj2l j pj , j 51,...,N,

which is nothing other than the well-known Zakharov–Shabat–AKNS spectral pro
~ZS-AKNSSP!26

yx5S l u

v 2l
D y ~13!

wherel5l j , y5(qj ,pj )
T. The potentialsu,v defined by Eq.~11! are correspond exactly to th

Bargmann–Garnier constraint1~b!

G05~v,u!T5(
j 51

N S dl j

du
,

dl j

dv D T

~14!

of ZS-AKNSSP~13!, wheredl j /du, dl j /dv are the two spectral gradients of spectral parame
l j with respect to the potentialsu andv. Therefore Eq.~7! coincides with the constrained AKNS
system (c-AKNSS!.

Similarly, after setting

u52 1
2 ~^p,p&2^q,q&!, v52^p,q&, ~15!

it is easily seen that Eq.~8! becomes the Dirac spectral problem~DSP!27

yx5S 2v l2u

2l2u v D y ~16!

with l5l j , y5(qj ,pj )
T. Thus, Eq.~8! is the constrained Dirac system (c-DS!.

Let us return to the Lax matrix~1! and~2!. By a simple calculation we obtain the following
Proposition 1:For J5AKNS andJ5D the following holds:

$AJ~l!,AJ~m!%5$BJ~l!,BJ~m!%5$CJ~l!,CJ~m!%50,

$AJ~l!,BJ~m!%5
2

m2l
~BJ~m!2BJ~l!!,

~17!

$AJ~l!,CJ~m!%5
2

m2l
~CJ~l!2CJ~m!!,

$BJ~l!,CJ~m!%5
4

m2l
~AJ~m!2AJ~l!!.
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Set L1
J(l)5LJ(l) ^ I , L2

J(m)5I ^ LJ(m), whereI is the 232 unit matrix. Then the above
proposition yields the following.

Theorem 2: The Lax matricesLJ(l) (J5AKNS,D) defined by Eqs.~1! and ~2! satisfy the
fundamental Poisson bracket

$L1
J~l! ,

^

L2
J~m!%5@r 12~l,m!,L1

J~l!#2@r 21~m,l!,L2
J~m!#. ~18!

Here $L1
J(l) ,

^

L2
J(m)% is a 434 matrix,14 @•,•# is the usual commutator of the matrix, and t

r -matricesr 12(l,m), r 21(m,l) are exactly given by the following standardr -matrices:

r 12~l,m!5
2

m2l
P, r 21~m,l!5Pr12~m,l!P, ~19!

P5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D 5
1

2 S I 1(
i 51

3

s i ^ s i D ~20!

~heres i are the Pauli matrices!.
So, thec-AKNSS ~7! andc-DS ~8! share the same standardr -matrix ~19!, which is obviously

nondynamical.
Remark 1:In fact, since ther -matrix relation~18! is concerned only with the commutator, th

r -matrix r 12(l,m) satisfying~18! in the case of thec-AKNSS ~7! andc-DS ~8! can be also chosen
as

r 12~l,m!5
2

m2l
P1I ^ S̃, S̃5S a b

c dD , ~21!

where the elementsa,b,c,d can be arbitrary functionsa(l,m,p,q), b(l,m,p,q), c(l,m,p,q),
d(l,m,p,q)PC`(R) with respect to the spectral parametersl, m and the dynamical variable
p,q. This shows that for a given Lax matrix, the associatedr -matrix is not uniquely defined~there
are even infinitely manyr -matrices possible!. Here we give the simplest case:a5b5c5d50,
i.e., the standardr -matrix ~19!.

III. THE CONSTRAINED HARRY–DYM „HD… AND HEISENBERG SPIN CHAIN „HSC…

SYSTEM

The constrained Harry–Dym~HD! system describes the geodesic flow on an ellipsoid
shares the samer -matrix with the constrained Heisenberg spin chain~HSC!.

To see this, we follow the process given in Sec. II, considering the following Lax matri

LHD5LHD~l!5S 2^p,q&l21 l221^q,q&l21

2^p,p&l21 ^p,q&l21 D 1(
j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D
[S AHD~l! BHD~l!

CHD~l! 2AHD~l!
D , ~22!

LHSC5LHSC~l!5S 2^p,q&l21 ^q,q&l21

2^p,p&l21 ^p,q&l21D 1(
j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D
[S AHSC~l! BHSC~l!

CHSC~l! 2AHSC~l!
D . ~23!

Set
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MHD5S 0 1

2
^Lp,p&

^L2q,q&
l 0D , ~24!

MHSC5S 2 il^Lp,q& il^Lq,q&

2 il^Lp,p& il^Lp,q&
D , i 2521. ~25!

Then a direct calculation leads to the following theorem.
Theorem 3: The Lax representations

Lx
HD5@MHD ,LHD#, ~26!

Lx
HSC5@MHSC,LHSC#, ~27!

respectively give the following FDHS:

~HHD!:5
qx5p5

]HHD

]p U
TQN21

,

px52
^Lp,p&

^L2q,q&
Lq52

]HHD

]q U
TQN21

,

^Lq,q&51;

~28!

~HHSC!:H qx5 i ^Lq,q&Lp2 i ^Lp,q&Lq5
]HHSC

]p
,

px5 i ^Lp,q&Lp2 i ^Lp,p&Lq52
]HHSC

]q
,

~29!

with the Hamiltonian functions

HHD5
1

2
^p,p&2

^Lp,p&
2^L2q,q&

~^Lq,q&21!, ~30!

HHSC5 1
2 i ^Lp,p&^Lq,q&2 1

2 i ^Lp,q&2. ~31!

Here, in Eq.~28! TQN21 is a tangent bundle inR2N:

TQN215$~p,q!PR2NuF[^Lq,q&2150,G[^Lp,q&50%. ~32!

Obviously, Eq.~28! is equivalent to

qxx1
^Lqx ,qx&

^L2q,q&
Lq50, ^Lq,q&51, ~33!

which is nothing but the equation of the geodesic flow on the surface^Lq,q&51 in RN space.3,22

On the other hand, by setting

u5
^Lqx ,qx&

^L2q,q&
, ~34!

Eq. ~33! becomes the well-known Harry–Dym spectral problem

yxx1luy50 ~35!

with l5l j , y5qj , j 51,...,N. Simultaneously, Eq.~34! gives the constraint condition considere
by Cao,3 so that Eq.~28! coincides with the constrained HD system (c-HDS!.
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In addition, after setting

u52^Lq,q&, v5^Lp,p&, w52^Lp,q&, ~36!

we can see that Eq.~29! becomes the Heisenberg spin chain spectral problem28

yx5S 2 ilw 2 ilu

2 ilv ilw D y, i 2521, ~37!

with l5l j , y5(qj ,pj )
T. Thus, Eq.~29! reads as the constrained Heisenberg spin chain sys

(c-HSCS!. The constraint defined by Eq.~36! has been studied and applied to obtaining involut
solutions for the Heisenberg spin chain equations in Ref. 29. However, ther -matrix was not given.

Now, we construct ther -matrix of c-HDS ~28! andc-HSCS~29!. Their Lax matrices~22! and
~23! share all elements except one, namely

S 0 l22

0 0 D .

Since this element does not affect the calculations concerning the fundamental Poisson

$L1
J(l) ,

^

L2
J(m)%, one can readily deduce that thec-HDS andc-HSCS possess the samer -matrix.

Theorem 4: The Lax matrixLJ(l) (J5HD,HSC) defined by Eqs.~22! and~23! satisfies the
fundamental Poisson bracket~18! with the common nondynamicalr -matrix

r 12~l,m!5
2l

m~m21!
P, r 21~m,l!5Pr12~m,l!P. ~38!

Apparently ther -matrix ~38! solves the classical Yang–Baxter equation~CYBE!

@r i j ,r ik#1@r i j ,r jk#1@r k j ,r ik#50, i , j ,k51,2,3. ~39!

Remark 2:The r -matrix r 12(l,m) satisfying Eq.~18! in the case ofc-HDS ~28! andc-HSCS
~29! can also be chosen as

r 12~l,m!5
2l

m~m2l!
P1I ^ S̃. ~40!

Evidently, Eq.~38! is the simplest case:S̃50 of Eq. ~40!.

IV. THE CONSTRAINED G AND Q SYSTEM

In this section, we introduce the following Lax matrices:

LG5LG~l!5S ~ 1
2 1^p,q&!l21 ^q,q&l21

0 2~ 1
2 1^p,q&!l21D 1(

j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D
[S AG~l! BG~l!

CG~l! 2AG~l!
D , ~41!

LQ5LQ~l!5S 2l21 ^q,q&l21

0 l21 D 1(
j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D[S AQ~l! BQ~l!

CQ~l! 2AQ~l!
D .

~42!

If we set
 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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MG5S 2
1

a
l

1

a
~^p,p&2^q,q&!21

1

a
~^p,p&2^q,q&11!l

1

a
l

D , ~43!

MQ5S l1
1

2b2 ^Lq,q&^p,p&
1

b
^Lq,q&

2
1

b
^p,p&l 2l2

1

2b2 ^Lq,q&^p,p&
D , ~44!

with

a5A~^p,p&2^Lq,q&!224^Lq,p&, b512^p,q&,

then, by a lengthy and straightforward calculation we obtain the following.
Theorem 5: The following Lax representations,

Lx
G5@MG ,LG# ~45!

and

Lx
Q5@MQ ,LQ#, ~46!

where the first one is restricted to the surfaceG5$(p,q)PR2Nu^p,q&50, ^Lq,q&^p,p&
1^Lq,p&50% in the spaceR2N, respectively produce the finite-dimensional systems

qx5
1

a
~2Lq1~^p,p&2^Lq,q&!p!2p,

~47!

px5
1

a
~Lp1~^p,p&2^Lq,q&!Lq!1Lq,

and

qx5Lq1
1

b
^Lq,q&p1

1

2b2 ^p,p&^Lq,q&q,
~48!

px52Lp2
1

b
^p,p&Lq2

1

2b2 ^p,p&^Lq,q&p.

In Eqs.~47! and ~48!, respectively insert

u5
1

a
5

1

A~^p,p&2^Lq,q&!224^Lq,p&
,

v5
^p,p&2^Lq,q&

a
5

^p,p&2^Lq,q&

A~^p,p&2^Lq,q&!224^Lq,p&
;

~49!

and

u5
^Lq,q&

b
5

^Lq,q&
12^q,p&

v5
2^p,p&

b
52

^p,p&
12^q,p&

.
~50!
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Then, Eqs.~47! and~48! turn out to become the spectral problem studied by Geng~simply called
G-spectral problem!,7

yx5S 2lu v21

l~v11! lu D y, ~51!

with l5l j , y5(qj ,pj )
T, and the spectral problem proposed by Qiao~simply calledQ-spectral

problem!,11

yx5S l2 1
2 uv u

lv 2l1 1
2 uv

D y, ~52!

with l5l j , y5(qj ,pj )
T, respectively. So, Eqs.~47! and ~48! are nothing but the constraine

Geng system (c-GS! and constrained Qiao system (c-QS! under the constraint conditions~49! and
~50!. Since the Lax equation~45! gives thec-GS ~47! on the surfaceG, the Lax matrixLG should
become

LG
G5LG

G~l!5S 1
2 l21 ^q,q&l21

0 2 1
2 l21 D 1(

j 51

N
1

l2l j
S pjqj 2qj

2

pj
2 2pjqj

D , ~53!

which is almost the same asLQ. Hence, through calculating the fundamental Poisson bracket
commutator we have the following theorem.

Theorem 6: For thec-GS ~47! andc-QS ~48!, their Lax matricesLG
G(l) andLQ(l) satisfy

the fundamental Poisson bracket~18! with the same nondynamicalr -matrix:

r 12~l,m!5
2

m2l
P2

2

m
S, S5S 0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

D 5s2 ^ s1. ~54!

We can easily show that Eq.~54! satisfies the CYBE~39!.
Remark 3:The r -matrix r 12(l,m) in Theorem 6 can be also chosen as

r 12~l,m!5
2

m2l
P2

2

m
S1I ^ S̃. ~55!

Equation~54! is the simplest case:S̃50 of Eq. ~55!.

V. CONCLUSION

In this article, we present three pairs of different finite-dimensional constrained systems
common nondynamicalr -matrices. Along the discrete Toda symplectic map and continuous
strainedc-KdV system discovered in Ref. 24 these three pairs form~to the authors’ knowledge!,
the only four examples of pairs of different finite-dimensional integrable systems possessi
above property. The question of whether or not there are any other pairs like them arises. It
that this is not the case.

From Remarks 1–3, we see that ther -matrix r 12(l,m) satisfying the fundamental Poisso
bracket~18! is composed of two parts, the first one being their main term, and the secon
being the common termI ^ S̃ of Eqs.~21!, ~40!, and~55!. Usually when proving the integrability
of FDHS we choose their main term as the simplest nondynamical one in order to redu
calculations.

Apparently, ther -matrix is not uniquely defined. In fact, there are infinitely manyr -matrices
since the elementsa,b,c,d in the matrixS̃ of Eqs.~21!, ~40!, and~55! can be arbitrarily chosen
and they may be constants as well as functions with respect to the spectral parametersl, m and the
dynamical variablesp,q. For a given Lax matrixLJ(l), our r -matrices formulas~21!,
 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~40!, and ~55! admit an infinite set of solutionsr 12(l,m) of Eq. ~18!, which includes both the
dynamical case@asa5a(l,m,p,q), b5b(l,m,p,q), c5c(l,m,p,q), d5d(l,m,p,q)PC`(R)#
and the nondynamical or constant case@asa5a(l,m), b5b(l,m), c5c(l,m), d5d(l,m), or
a,b,c,d5const#.

In analogy to the first author’s thesis,30 we can further discuss the involutive sets, integrabili
separation of variables, and algebraic–geometric solutions for these constrained FDHSs b
the determinant of Lax matrix,r -matrix relation, Poisson bracket, and further modern algebra
geometric tools.
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