JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 6 JUNE 1998

On different integrable systems sharing the same
nondynamical r-matrix

Zhijun Qiao®
Institute of Mathematics and School of Mathematical Science, Peking University,
Beijing 100871, Peoples Republic of China

Walter Strampp?
Fachbereich 17, Mathematik, Universitaet-Gh Kassel,
Hollaendische Str. 36, 34109 Kassel, Deutschland

(Received 25 November 1997; accepted for publication 6 February) 1998

In a recent papdiZhijun Qiao and Ruguang Zhou, Phys. Lett.285 35 (1997)],

the amazing fact was reported that a discrete and a continuous integrable system
share the same-matrix with the interesting property of being nondynamical. Now,
we present three further pairs of different continuous integrable systems sharing the
samer-matrix again being nondynamical. The first pair is the finite-dimensional
constrained systeFDCS of the famous AKNS hierarchy and the Dirac hierar-
chy; the second pair is the FDCS of the well-known geodesic flows on the ellipsoid
and the Heisenberg spin chain hierarchy; and the third pair is the FDCS of one
hierarchy studied by Xianguo Gen@hys. Lett. A162, 375(1992] and another
hierarchy proposed by Zhijun QigdPhys. Lett. A192 316 (1994)]. All those
FDCSs possess Lax representations and from the viewpointnaditrix can be
shown to be completely integrable in Liouville’s sense. 1898 American Insti-

tute of Physics[S0022-24888)02506-7

I. INTRODUCTION

The well-known nonlinearization methbis a powerful tool to generate completely integrable
finite-dimensional Hamiltonian systeni®IFDHS9 from the eigenvalue problems or Lax pairs of
nonlinear evolution equation®LEES). With the help of this method many new CIFDHSs have
been successively found, and solutions to NLEEs have been given by involutive or parametric
representations.? The r-matrix"> method is quite an effective approach to the Lie—Poisson
structure in & 1-dimensional spac¥;*°providing fundamental commutator relations in the quan-
tum inversing scatterinf. Recently, the study of CIFDHSs admitting armatrix has already
received attentioh’~?2It has been shown thatmatrices play a very important part in proving the
integrability of CIFDHSs. Besides, the Lax matrix associated withr theatrix of a CIFDHS can
be applied for obtaining algebraic—geometric solutions of soliton equations or N°EEs.

In a recent pape? we reported an interesting and surprising result: a discrete and a continu-
ous integrable system possess the same nondynaminaltrix being independent from the dy-
namical variablegp,q. The question of whether there are other pairs of continuous or discrete
finite-dimensional integrable systems sharing the sammstrix which should be nondynamical
arises. In the present paper, on the basic idea of Ref. 24 we have considered a wide class of 2
X 2 spectral problems and finally succeeded in finding three other pairs of different continuous
integrable systems with the common nondynamicahatrix. The first pair is formed by the
finite-dimensional constrained systefffDCS of the famous AKNS and Dirac hierarchies; the
second pair is formed by the FDCS of the well-known geodesic flow on the ellipsoid and the
Heisenberg spin chain hierarchy; while the third pair consists of the FDCS of a hierarchy studied
by Xianguo Gen§and a hierarchy proposed by Zhijun QiHoAll of these FDCSs possess Lax
representations, and by using thenatrix approach can be shown to be completely integrable in
Liouville’s sense.
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Before displaying these results, let us first introduce some basic symbols and notations. Let
(R?N,dpdq) stand for the standard symplectic structure in the Euclidic sp&te={(p,q)|p
=(p1s---,Pn); 9=(dyq,..-,0n)}, Wherep;,q; (i=1,...N) areN pairs of canonical coordinates.

The standard inner product RN will be denoted by(-,-) and the Poisson bracket of two Hamil-
tonian functionsF,G is given througf®

F G}_% (aF iG  oF aG)_<0F 8G>_<(9F aG>
’ =1\ 00 dp;  Ip; 94 aq’ dp ap’aq/

With N arbitrary distinct constantsq,...,Ay we form the diagonal matri\ =diag(\y,...\n),
while \, u are used for two different spectral parameters. 8 R) we denote the set of all
functions on real fieldR being infinitely many times differentiable. Finally,stands for the spatial
continuous variable.

II. THE CONSTRAINED AKNS AND DIRAC (D) SYSTEM

We consider the following two 2 traceless Lax matrices:

N —qg?
LAKNS:LAKNS()\):(l ° I (quj ql):(AAKNS()\) BAKNS(’\)>
0 -1/ =1 A=A\ pf —pg Cakns(N) = Aakns(M)
ey
0 1 X 1 (pa —df ) [As(\)  Bp(N)
-1 0/ = A=A App —pg;) \Co(M) —Ap(N)
Let us choose two & 2 matricesM pxns andMp :
A —<q,c4>)
M = , 3
AKNS (<p’p> -\ ()
(p.a) N+ 2 ((p.p)—(a.a))
MD: 1 . (4)
=M+ 3 ((p.p)—(a.0)) —(p.q)
Then we have the following.
Theorem 1: The Lax equations
LQKNS: [M akns LAKNS], (5)
LY=[Mp,LP], (6)
respectively describe the following finite-dimensional Hamiltonian syst&i$S9 (Hakns) and
(Hp),
IH akns
Oh= (AP +AG=—2 =
(Hakns): 9H (7)
AKNS
Px=(P.P)A=Ap=——5-—;
dHp

ax=(P.q)a+3 ((p.p)—(a,q))p+Ap= TR
(Ho): sHo ®
Px=—(P.ayp—3 ({P.p)—(a.q))q—Agq=— g

with Hamiltonian functions
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Hakns=(A0,p)— 3 (p,p){(0,q), )

Ho=3 ((Ap,p)+(Aq,q)+3 ((p.a)*—(q,a)(p.p)) +5 ((P.p) +(q,q))>. (10

Proof: By direct calculation.
Through setting

u=—(a,q9), v=(p,p), 1y

Eq. (7) becomes

ij:)\ij+Upjv j:].,...N, (12)

Pix=vd;—\;p;, j=1,...N,

which is nothing other than the well-known Zakharov—Shabat—AKNS spectral problem
(ZS-AKNSSP?®

B A u)
yx—(v Y (13

whereh=X\;, y=(q; ,pj)T. The potentialsi,v defined by Eq(11) are correspond exactly to the
Bargmann—Garnier constratfit

Norong an\T
Go=(v,u)"=2, (5—u’ 5—;) (14)

of ZS-AKNSSP(13), whered\;/du, X/ v are the two spectral gradients of spectral parameters
\; with respect to the potentiaisandv. Therefore Eq(7) coincides with the constrained AKNS
system ¢-AKNSS).

Similarly, after setting

u=-3(p.p)—(a.a)), v=—(p.,a), (15)

it is easily seen that Eq8) becomes the Dirac spectral problé®SP?’

-V A—u
Yx=

—\A—U v y (16

with A=\, y=(q; ,pj)T. Thus, Eq.(8) is the constrained Dirac systern-DS).
Let us return to the Lax matrikl) and(2). By a simple calculation we obtain the following.
Proposition 1:For J=AKNS andJ=D the following holds:

{A(N),A ()} ={B3(\),B3()}={C3(N\),Cy(u)}=0,

2
{A;(N),By(m)}= Y (By()—By(N)),
(17
2
{A;(N),Cy(u)}= Y (C3(N)—Cy(w)),

4
{By(N),Cy(u)}= TSN (Ay(p) —=As(N)).
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SetLi(\)=L(\)®l, Ly(u)=1®L%(u), wherel is the 22 unit matrix. Then the above
proposition yields the following.

Theorem 2: The Lax matriced ’(\) (J=AKNS,D) defined by Eqs(1) and(2) satisfy the
fundamental Poisson bracket

(L2020} = 1200 i) L3OV T =[P ar A, L) - (18)

®
Here {LI(\),Ly(w)} is a 4x4 matrix*[-,-] is the usual commutator of the matrix, and the
r-matricesr 15(\, 1), ro1(x,\) are exactly given by the following standarematrices:

2
rlz(A,M):m P, 1o, N)=Pryu,N)P, (19

3
|+2 gi® o

1
"2

(20

o B O O

0
0
0
1

o O O -
o O ~» O

(hered; are the Pauli matrices

So, thec-AKNSS (7) andc-DS (8) share the same standardanatrix (19), which is obviously
nondynamical.

Remark 1i1n fact, since the-matrix relation(18) is concerned only with the commutator, the

r-matrixr 1o(\,u) satisfying(18) in the case of the-AKNSS (7) andc-DS (8) can be also chosen
as

a b
d

2 ~
I’lz()\,/.l,)zﬁp-i-l@s, S= ) (21)

where the elementa,b,c,d can be arbitrary functiona(\,x,p,qd), b(A,«,p,q), c(\,u,p,q),
d(\,u,p,q) e C*(R) with respect to the spectral parametatsy and the dynamical variables
p,q. This shows that for a given Lax matrix, the associatedatrix is not uniquely definetthere
are even infinitely many-matrices possible Here we give the simplest case=b=c=d=0,
i.e., the standard-matrix (19).

[ll. THE CONSTRAINED HARRY-DYM (HD) AND HEISENBERG SPIN CHAIN (HSC)
SYSTEM

The constrained Harry—DyrfHD) system describes the geodesic flow on an ellipsoid and
shares the samematrix with the constrained Heisenberg spin ch&i#sC).
To see this, we follow the process given in Sec. Il, considering the following Lax matrices:

% 1 (quj —qf)

pJ —Pjq;

—(P. A"t A2 (g, Nt
—(p.pA"t (pa)n Tt

=<AHD(7\) Brp(N) )

LHD:LHD()\):(

Cup(N)  —App(N) )’ @2
—(p.g)n <q.q>x‘> A (quj —qu)
LHSC:LHSC :(
) —(p.p)A"t (papr~t JZ: P’ —piq;
[ AnsdN)  BusdM) )
_(CHSC()\) —AusdN)/ 3

Set
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0 1
Mup=| (Ap.p) \ 0] (24
(A%9,q)

—iNAp,g) iIMAQ@)|

Musc=| . . , it=-1 (25
HSCTl —in(Ap.p)  IN(AP,Q)
Then a direct calculation leads to the following theorem.
Theorem 3: The Lax representations
Ly°=[Myp, L], (26)
L% =[Musc, L7, 27
respectively give the following FDHS:
qX p 0p TQN—l’
(Hup): (Ap.p) IHup (28
T pe=— A2aqy Aa=— :
< q'q> (9q TQN’J-
(Ag,q)=1;
IHpsc

ax=1(AQ,)Ap—i(Ap,q)Aq= g
(Hrso) aH (29
px:|<Ap'q>Ap—|<Ap,p>Aq: —

aq
with the Hamiltonian functions
1 (Ap.p)
Hip==z(p,p)— 55— ((AQ,q)— 1), 30
HD 2(p p) 2(A%q,q) ((Ag,a)—1) (30)
Husc=3 i{Ap,p){(Aq,a)— 3 i{Ap.a)°. (31)
Here, in Eq.(28) TQV ! is a tangent bundle iR?N:
TQ"*={(p,q) e R®NF=(Aq,q)~1=0G=(Ap,q)=0}. (32
Obviously, Eq.(28) is equivalent to
(Adx.9x
+-—-A0g=0, (Ag,q9)=1, 33
Dot “AZg.qy M40 (A (33

which is nothing but the equation of the geodesic flow on the sufAcgq)=1 in RN space’??
On the other hand, by setting

_ (Adx,0y)
"= A% (34

Eq. (33) becomes the well-known Harry—Dym spectral problem
VYux T AUYy=0 (35

with A=\, y=q;, j=1,...N. Simultaneously, E¢(34) gives the constraint condition considered
by Cao® so that Eq(28) coincides with the constrained HD systemiDS).
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In addition, after setting

u=—(Aq,q), v=(Ap,p), w=—(Ap,q), (36)

we can see that E429) becomes the Heisenberg spin chain spectral profflem

(—i)\w —i\u S
yX_ _|)\U |)\W y1 | __11 (37)

with A=X\;, y=(q; ,p,-)T. Thus, Eq.(29) reads as the constrained Heisenberg spin chain system

(c-HSCS. The constraint defined by E6) has been studied and applied to obtaining involutive

solutions for the Heisenberg spin chain equations in Ref. 29. Howevar;ittatrix was not given.
Now, we construct the-matrix of c-HDS (28) andc-HSCS(29). Their Lax matrice$22) and

(23) share all elements except one, namely

0 N2
0 0/
Since this element does not affect the calculations concerning the fundamental Poisson bracket

®
{Li()\) , L%(,u)}, one can readily deduce that théHDS andc-HSCS possess the samenatrix.
Theorem 4: The Lax matrixL’(\) (J=HD,HSC) defined by Eqg22) and(23) satisfies the
fundamental Poisson brackg8) with the common nondynamicatmatrix

2\
f12(7\,,u)=mp, Fag(p,N)=Propm,N)P. (39)

Apparently ther-matrix (38) solves the classical Yang—Baxter equat{@YBE)
Crij radd +0rijorpd +0r rd =0, 1,j,k=1,2,3. (39
Remark 2:Ther-matrixr5(\,u) satisfying Eq.(18) in the case ot-HDS (28) andc-HSCS

(29) can also be chosen as

2\ ~
rlz()\,ﬂ)ZmP+|®S. (40

Evidently, Eq.(38) is the simplest cas&=0 of Eq. (40).

IV. THE CONSTRAINED G AND Q SYSTEM
In this section, we introduce the following Lax matrices:
(zH(p.a)r~* G + > 1 (pj% —qf )
0 —(G+H(p.aHrt) = AN PT o —pig

(AG(?\) BG(M)
Ce(N) —Ac(M))’

LG=LG()\)=<

(41

S SR (<o) YN
0 AL

2
1 Pid;  —dj
Y ( i i )

Ao(N)  Bg(N)
Q| Q = : \
L¥®=L°(\) ( =a-0 ) pP i) ( )

Co\) —Ag(N)
(42

If we set
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1 1 1
-\ - (p.p)—=(a.a)~
M= , 1 . , (43
- (PP —=(a,a)+ 1)) 2N
A ! A ! A
252 (Aa.a)(p.p) 5 (Aa.a)
Mq= 1 T : (44)
—g (PP ~A= 55z (AQ.0)p.P)
with
a=({(p.p)—(Aq,a))*~4(Aq,p), B=1—(p.q),
then, by a lengthy and straightforward calculation we obtain the following.
Theorem 5: The following Lax representations,
Le=[Mg,LC] (45)
and

where the first one is restricted to the surfafe={(p,q)eR?N|(p,q)=0,(Aq,q){p,p)
+(Aq,p)=0} in the spacek?N, respectively produce the finite-dimensional systems

1
=", (—=Ag+((p,p)—(Aq,a))P)—Pp,

(47)
1
Px=7, (AP+((p.p)~(AG,a))Aq)+ Aq,
and
ax=Aq+ ! (Ag,q)p+ : (p.p){AQ,q)q
X n ) 52 ' ’ ’
B 2B (48)
~ 1 1
px——Ap—E <p,p>Aq—ﬁz (p.p){AQ,q)p.
In Egs.(47) and (48), respectively insert
_1 1
a  (p.p)—(Aq,a))>—4(Aq,p)’
_{p.P)=(Aqa) _ (p.p)—(Aq,0) | “9
a V({p.p)—(Aq,q))?—4(Aq,p)’
and
yoAaa  (Aag.q)
B 1-(q,p)
LR (pp) (50

B 1-(a.p)’
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Then, Egs(47) and(48) turn out to become the spectral problem studied by Gsimgply called
G-spectral problemy’

_( —\U v—l)
Y“I\w+1) au /Y (51

with )\=)\£, y=(q; ,pj)T, and the spectral problem proposed by Qfsimnply calledQ-spectral
problem,!

- % uv u
Yx \v “A+iuw Y

with A=X;, y=(q; ,pj)T, respectively. So, Eq€47) and (48) are nothing but the constrained
Geng systemd-G9) and constrained Qiao systemQS) under the constraint conditiori49) and
(50). Since the Lax equatiof5) gives thec-GS (47) on the surfacd’, the Lax matrixL® should
become

Y 53

BT @ant) L (p,—qj —qf)
2 S ! P —piay)

L?=L?<x>=(

which is almost the same &&. Hence, through calculating the fundamental Poisson bracket and
commutator we have the following theorem.

Theorem 6: For thec-GS (47) andc-QS (48), their Lax matriced Z(\) andL9(\) satisfy
the fundamental Poisson brack&B) with the same nondynamicatmatrix:
0 0 O
0 0O
1 00
0 0 O

o O O

=o_®oc". (54
0

We can easily show that E¢G4) satisfies the CYBE39).
Remark 3:Ther-matrixrq,5(\,u) in Theorem 6 can be also chosen as

2 2 ~
r12()\,,u)=MT)\P—;S+I®S. (55)
Equation(54) is the simplest cas8=0 of Eq. (55).

V. CONCLUSION

In this article, we present three pairs of different finite-dimensional constrained systems with
common nondynamical-matrices. Along the discrete Toda symplectic map and continuous con-
strainedc-KdV system discovered in Ref. 24 these three pairs f@orthe authors’ knowledge
the only four examples of pairs of different finite-dimensional integrable systems possessing the
above property. The question of whether or not there are any other pairs like them arises. It seems
that this is not the case.

From Remarks 1-3, we see that thenatrix r5(\,u) satisfying the fundamental Poisson
bracket(18) is composed of two parts, the first one being their main term, and the second one
being the common term® S of Eqgs.(21), (40), and(55). Usually when proving the integrability
of FDHS we choose their main term as the simplest nondynamical one in order to reduce the
calculations.

Apparently, ther-matrix is not uniquely defined. In fact, there are infinitely manmatrices
since the elements,b,c,d in the matrixS of Egs.(21), (40), and(55) can be arbitrarily chosen,
and they may be constants as well as functions with respect to the spectral parametansl the
dynamical variablesp,q. For a given Lax matrixLY(\), our r-matrices formulas(21),
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(40), and (55) admit an infinite set of solutions,5(\,u) of Eqg. (18), which includes both the
dynamical casgasa=a(\,u,p,q), b=b(\,u,p,q), c=c(\,u,p,q), d=d(\,u,p,q) e C*(R)]
and the nondynamical or constant casa=a(\,u), b=b(\,u), c=c(\,u), d=d(\,u), or
a,b,c,d=consf.

In analogy to the first author’s thesi¥we can further discuss the involutive sets, integrability,
separation of variables, and algebraic—geometric solutions for these constrained FDHSs by using
the determinant of Lax matrix,-matrix relation, Poisson bracket, and further modern algebraic—
geometric tools.
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