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In this article, a system of finite-dimensional involutive functions is presented and 
proven to be integrable in the Liouville sense. By using the nonlinearization 
method, the C. Neumann system associated with the modified Korteweg-de Vries 
(mKdV) hierarchy is obtained. Thus, the C. Neumann system is shown to be com- 
pletely integrable via a gauge transformation between it and an integrable Hamil- 
tonian system. Finally, the solution of a stationary mKdV equation and the involu- 
tive solutions of the mKdV hierarchy are secured. As two examples, the involutive 
solutions are given for the mKdV equation: u,+ ;uXXX- $u2u,=0 and the 5th 
mKdV equation v,- ~v,,,~~+~u~v,,~+~vv,v,,+ &~-$v4uX=0. 

I. INTRODUCTION 

Recently, an investigation on completely integrable systems is fascinating in soliton theory. 
Many people have devoted themselves to doing studies in this field. In particular, since the 
nonlinearization method”2 about the spectral problem and Lax pair came into use, many classical 
completely integrable Liouville’s systems3-I2 have been successively found. These integrable 
systems include the C. Neumann system, Bargmann system, and others, which depend on the 
existence of N-involutive system F, (m=0,1,2,...,) of Hamiltonian functions; it naturally gives 
rise to a problem: Are there some relations among those completely integrable systems or not? 
From the view point of geometry or algebra, what roles do the terms of polynomials included in 
the various kinds of constructions of functions E’s and F, (m = 1,2,3,. . .,) play? The general 
method has not been looked for yet. In the present article, a gauge transformation between the C. 
Neumann system associated with the modified Korteweg-de Vries (mKdV) hierarchy and an 
integrable Hamiltonian system whose involutive system F,,, exist (see Sec. II) is found, and from 
this the C. Neumann system is proved to be completely integrable in the Liouville sense. 

In a previous article,” completely integrable Hamiltonian systems associated with the Kaup- 
Newell hierarchy and Levi hierarchy were discussed under the so-called Bargmann constraints.2 
This article deals with an integrable C. Neumann system and the involutive solutions of the mKdV 
hierarchy under the so-called C. Neumann constraint, 2 i.e., the present work is an extension of 
Ref. 11. The article is organized as follows: in the next section, a set of finite-dimensional 
involutive functions F, which guarantees the existence of the first integral of Hamiltonian system 
(Fo) is presented in explicit form and the Hamiltonian systems (F,) are shown to be integrable in 
the Liouville sense lirst. Then by the use of the nonlinearization method, under the C. Neumann 
constraint, the spectral problem associated with the mKdV hierarchy is nonlinearized as an inte- 
grable C. Neumann system, which is proven through making a gauge transformation between the 
C. Neumann system and an integrable Hamiltonian system. Section IV gives a description of the 
solution of a stationary mKdV system and the involutive solutions of the mKdV hierarchy. Par- 
ticularly, the involutive solutions of the well-known mKdV equation u,f $u,,- ~u2v,=0 and the 
5th mKdV equation v,- &vXxXxx+ ~v~u,,+~uu,u,+ $2 -&u4uX= 0 are obtained. 
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II. AN INVOLUTIVE SYSTEM, C. NEUMANN SYSTEM, AND GAUGE TRANSFORMATION 

The Poisson bracket of two functions F, G in the symplectic space (R2’v,dpr\dq) is defined 
by I3 

(1) 

The functions F, G are called involutive if (F,G)=O. 
Now, we construct a set of functions {F,} as follows: 

F,= - i(h 2m+1~,~)+: jj ((n2jp,p)-(A2jq,q))((A2;m-j)p,p)-(A2(m-j)q,q)) 
j=o 

1 m ((h2j-‘p,p)+(A2j-1q,q)) 2(A 2(m-j )+ lq,p) 
-- 

4 z/ 2(h 2j-1P,q) ((A 
2(m-j )+l 

j=l 
p,p)+(P(m-j )+lq,q)) ’ (2) 

where A, ,..., AN are N different constants, A=diag(ht ,..., X,), q=(q, ,..., qN)T, p=(p~ ,..., p~)~, 
and (-, .) is the standard inner product in RN. In particular, one has 

Fo=-i(Ap,q)+a((p,p)-(q,q))2. (3) 

Through a lengthy calculations, it is not difficult to get the following results. 
Lemma I: 

(2,$+(2,2), Vk,leZ+. (4) 

Hence, (Fk ,F,) =(aFklaq,dFIldp)-(aFkldp,dFrldq)=O. Following this result, we have 
the following. 

Theorem 2: The Hamiltonian systems (F,) determined by Eq. (2) 

dF??l 
(F,):q,m=F, pr,= -2 7 m=0,1,2,... 

are completely integrable in the Liouville sense. 
Particularly, the Hamiltonian system (to = x) 

V-0): 
qx=2 =-iAq+((p,p)--(q,q))p 

JFo - =iAp+((p,p)-(q,q))q lJx=- dq 

is integrable. Here (Fo) is defined by Eq. (3). 
Consider the spectral problem 

(5) 

(6) 

yx= u 
A2 

i i -1 --u y, (7) 
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where v is a potential function, X is a spectral parameter, y = (yi ,yz)r. Let A, ,...,XN be N 
different spectral parameters of Bq. (7), and yj = (ej , pj)T be eigenfunctions corresponding to Xi . 
Then it is easy to calculate the functional gradient SAjI6U of Xi with regard to v 

(8) 

which satisfies the linear equation 

~~~j/SV=Xj2SXj/SV, ~=-Sd2+ud-‘vd, d=dfdX. (9) 

Gu14 has proven that under the Bargmann constraint (Ref. 2) Go= Cy= i SXjISLJ 7 i.e., u = (P, Q), 
IQ. (7) is nonlinearized as a completely integrable system in the Liouville sense. Here Go = u is 
the second element of the Lenard’s recursive sequence {Gil Gj=S’Gj- 1, G- i = 0 (d-IO= 1, 
G,,=i.%G-,=u), j=O,1,2 ,..., }. N ow, we consider the C. Neumann constraint2 

N 

GmI=-4is X;‘SXk/Sv, i2=-1. 
k=l 

Acting with the operator SF upon Eq. (10) and noting Eq. (9), we get 

u= -4i(P,AQ). (11) 

Under Eq. (1 I), Eq. (7) is nonlinearized as 

Q,= -4i(P,AQ)Q+A2P, 

P,= -Q+4i(P,AQ)P, 
02) 

which is called the C. Neumann system of Eq. (7). 
A basic problem is whether the C. Neumann system (12) is completely integrable in the 

Liouville sense or not. In order to prove the integrability of Eq. (12), we make the transformation 

Q= ;(p+q), P= iin-‘(p-q). (13) 

Thus, Eq. (12) becomes 

which is exactly the Hamiltonian system (6). On the contrary, Eq. (6) can be changed into Eq. (12) 
via the inverse transformation of Bq. (13) 

q=Q+iAp, p=Q-iAP. (14) 

By the integrability of Eq. (6), from Eq. (13) we immediately know that Eq. (12) is completely 
integrable. The transformation (13) is called the gauge transformation between the C. Neumann 
system (12) and Hamiltonian system (6). 

Theorem 3: The C. Neumann system (12) is completely integrable. 
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III. A STATIONARY MKDV SYSTEM AND INVOLUTIVE SOLUTIONS OF MKDV 
HIERARCHY 

Theorem 4: Let (Q,P) be a solution of the C. Neumann system (12), then v=-4i(P,hQ) 
satisfies a stationary mKdV equation 

* N-l 

JB% + c LY,jr-&& =o, 
k=O 

(15) 

where J= d, Cyj are determined by Xl )..., kN. 
Proof Letting the operator 3’ act upon Eq. (11) and noticing Eq. (9), Gj+ , =%‘Gj ( j 

=0,1,2 ,.... ), we have 

N 

~“v=-di~ hi’+‘&kk/&. (16) 
k=l 

Introduce the polynomial (cxu= 1) 

p(h)= i X(X-X~)=aOhN+‘+a’XN+“‘+(YNX. 
k=l 

(17) 

Acting with the operator JZfJ,, (YN-[ upon Eq. (16) and using Eq. (17), we get Eq. (15). 
We denote by g: the solution operator of the initial-value problem of (F,). Since 

(Fa , F,) =O, the two Hamiltonian systems ( Fo), (F,) are compatible, and their phase flows ,gc, 
g: (tc=x) commute.13 Define 

(;;:;;;J =a?( g’, j, (18) 

which is called the involutive solution of the consistent equations (F,) and (F,), and is a smooth 
function of (x,t,). 

Theorem 5: Let (q(x,t,), p(x,t,)) be an involutive solution of the commutative flows (F,) 
and (F,). Then 

u=-4i(P(x,t,),AQ(x,t,)), P(x,t,)=$A-‘(p-q), Q(x,t,)=#(p+q) 09) 

is a solution of the higher-order mKdV equation 

vtm =J‘LFk, m=0,1,2,... 

Proof *= -4i(P(x,t,),AQ(x,t,))=(p(x,t,),p(x,t,))-(q(x,r~),q(x,~~)) 

N 

=d((A2mp,p)-(A2mq,q))=d(-4i(A2m+1P,Q))=J -4ic X~m+18kk/& 
k=l 
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In the above lengthy calculations, Eqs. (5), (6), (14), and (16) are used. The proof is completed. 
Choosing m = 1 and 2 in Theorem 5, we can obtain the involutive solution of the mKdV 

equation v,+ fvxxX-$2vX= 0 and 5th mKdV equation vI-- ~v,,,+~~2vU,+~v~,v~~+ iv:-- 
iv4vX= 0, respectively. Thus, we have the following corollary. 

Corollary 6: Let (q(x,t,),p(x,t,)) be an involutive solution of the compatible Eqs. (F,) and 
(F,). Then 

v= -4i(P(x,tt),AQtx,tt)), P(x,tt)=$A-‘(p-q), Q(x,tt)=%p+q) 

satisfies the well-known mKdV equation 

*t+ t*xxr - qu2v,=o, t=t*. 

Proof In virtue of v=(p,p)-(q,q), and Eqs. (2), (14), and (16), we get 

(21) 

(22) 

=d((A2p,p)-(A2q,q))=4-4i(A3P,Q)) 

l 

N 

=J -4ic k36hk/& =J~G,=JYL=-~vv,,,+~u2v,. 
k=l 1 

In analogy to the proof of Corollary 6, we also have the next corollary. 
Corollary 7: 

u= -4i(P,(x,t2),AQ(x,t2)), fYx,r2)=$A-‘(p-q), Q(x,fd=b+q) (23) 

satisfies the 5th mKdV equation 

*t--E .x+.%Xx ‘V + ~v2v,,, + $Jv,v,,+ $vZ- &v4v,=o, t=t2, (24) 

where (q(x,t2),p(x,t2)) is an involutive solution of the consistent systems (F,) and (F2). 
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