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A spectral problem and an associated hierarchy of nonlinear evolution equations are 
presented in this article. In particular, the reductions of the two representative 
equations in this hierarchy are given: one is the nonlinear evolution equation 
rl= - ar,- 2icu/3] r2] r which looks like the nonlinear Schrijdinger equation, the 
other is the generalized derivative nonlinear Schrijdinger equation 
rt= $ar,,- ialr12r- a/3(lr12r),- j3I I a r 2r,-2iap21r14r which is just a combi- 
nation of the nonlinear Schrijdinger equation and two different derivative nonlinear 
Schrodinger equations [D. J. Kaup and A. C. Newell, J. Math. Phys. 19, 789 
(1978); M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 1006 (1980)]. 
The spectral problem is nonlinearized as a finite-dimensional completely integrable 
Hamiltonian system under a constraint between the potentials and the spectral 
functions. At the end of this article, the involutive solutions of the hierarchy of 
nonlinear evolution equations are obtained. Particularly, the involutive solutions of 
the reductions of the two representative equations are developed. 

1. INTRODUCTION 

It is well known that the inverse scattering transformation’ (IST) method plays an important 
role in solving many nonlinear evolution equations2-9 such as Korteweg-de Vries (KdV), nonlin- 
ear Schriidinger, sine-Gordon, and other nonlinear differential equations which have great appli- 
cation in physics. But the main difficulty of the IST method lies in finding an appropriate spectral 
problem for a given nonlinear evolution equation. Hence, it is interesting for us to search for as 
many new spectral problems and corresponding nonlinear evolution equations as possible in 
soliton theory. In 1989, Tu” proposed a so-called loop algebra scheme to generate integrable 
evolution equations from the spectral problem. According to this method, many integrable non- 
linear evolution equations, their trace identities, and Hamiltonian structures are successively 
obtained.‘1-‘5 

In this article we introduce the spectral problem 

y,=My, y=(;;), M=( -iu X+u+p(u2-u2) 
-x+rJ-p(u2-u2) 

iu 

which is a simple extension of the Dirac eigenvalue problem16 

i 

-iu X+U 
Y~=MY, M= -h+u iu 7 

where u and u are two scalar potentials, X is a constant spectral parameter and /3 is a constant. 
Using the spectral gradient of spectral value A with respect to the potentials u and u, which was 

“)Mailing address. 
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cited earliest by Fokas17 in 1982 to obtain hereditary symmetries for Hamiltonian systems, we 
derive a new hierarchy of nonlinear evolution equations associated with Eq. (1.1). The two rep- 
resentative systems of equations in this hierarchy are as follows: 

and 

ut= -au,+2icYpu(U2-U2), 
u,= -au,+2ia/3u(u2-u2), 

(1.2a) 
(1.2b) 

u,=~iau,,+icuu(u2-u2)+crp(u(u2-u2)),+ap(u2-u2)u,-2ia~2u(u2-u2)2. (1.3b) 

As cy, p are two real numbers and u = i Im r, u = Re r. Eqs. (1.2) and (1.3) are reduced to a 
nonlinear evolution equation 

rf= - arx-2icuPlr12r 

and a generalized derivative nonlinear Schrodinger equation (GDNSE) 

(1.4) 

r,=~icur,,-icvlr12r-(yp(lrl2r),-aplrl2r,-2icup2lrl4r. (1.5) 

respectively. The former looks like the well-known nonlinear Schriidinger equation, the latter is 
just a combination of the nonlinear Schriidinger equation and two derivative nonlinear Schrti- 
dinger equations.‘8*‘9 Through the nonlinearization2’ of the spectral problem (1. I), which has 
already been applied successfully to generate completely integrable systems in the Liouville sense 
and obtain the involutive solutions of nonlinear evolution equations,2*-33 we give a finite- 
dimensional completely integrable Hamiltonian system in the Liouville sense. Furthermore, the 
involutive solutions of this hierarchy of nonlinear evolution equations are obtained. In particular, 
the involutive solutions of the nonlinear evolution equation (1.4) and the GDNSE (1 S) are given. 

II. THE HIERARCHY OF NLEEs ASSOCIATED WITH EQ. (1.1) 

Consider the spectral problem (1.1). Let A and y= (yt ,y2)r be the spectral value and the 
associated spectral function of Eq. (1.1). It is easy to calculate the spectral gradient 
VX=( SAISU,SA/SU)~ of spectral value A with respect to the potentials u and u 

VA= 
-2iYlY2+2PdY:+Yii) 
-Y:+Y:-2PdYT+Y;) 

Noting 

, 

3 (y~-y~),=iu(y~+y~)-2Ay~y2-2P(u2-u2)y~Y2. 

(Y~Y~)+=A(Y~-Y:)+u(Y:+Y~)+P(~~--~)(Y~-Y:), 

we have the following proposition: 

(2.1) 

(2.2), 
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Proposition 2.1: 

KVX=h.JVX, (2.3) 

where K and J are two operators (d=d/ax,dd-‘=a-‘d=l) 

J= 
-8pva-b 2i-8puT’u 

-2i-8pud-‘u -8pua-lu , J*=-J, 

which are called the pair of Lenard’s operators of Eq. (1.1). 
Proo$ Directly calculate. 
Consider the Lenard’s gradient sequences Gj defined by 

KGj_,=JGj, j=1,2 ,..., Go=a(u,-u)TEKer J, (2.4) 

where (Y is an arbitary constant. The vector fields X,&KG, yield the hierarchy of nonlinear 
evolution equations (NLEEs) associated with Eq. (1.1) 

u 
0 u t 

=X,(U,~)=K(J-‘K)~G~, m=0,1,2 ,... . 
m 

(2.5) 

The first and second systems of evolution equations in the hierarchy (2.5) are 

1 u,= --(~u,+2ia~u(z4~-u~), 
ut= -au,+2ia@4(u2--u’), 

and 

respectively. As a,jlcR and u = i Im r, u =Re r, the former can be reduced to the nonlinear 
equation (1.4) whose physical property is to be known, and the latter can be reduced to the 
GDNSE (1.5). 

III. FINITE-DIMENSIONAL INVOLUTIVE SYSTEMS AND AN INTEGRABLE SYSTEM 

The Poisson bracket of two functions in the symplectic space (R2”,dpAdq) is defined by34 

W=,~l (~~-~~)=(F’.G,)-(T,,C,). I I 

F, G are called involutive, if (F,G)=O. 
Let A,<----+ and define 

(3.1) 
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Bkj” Pk4j- 4kPj * (3.2) 

jfk 

By virtue of the equalities 

((PvP),Pk2) = (h?)~q;) =O, (PtTP:) = (dd =O* 

(h)d) = (&(P$)) =+kqk, 

(rk ,P:)=4(Ak-XI)-‘PkPIBkl, (rk ,4~)=4(hk-X,)-‘qkqlBkl 

we easily verify the following proposition: 
Proposition 3. I: Let 

Ek=~(i-2((p,p)+(q,q)))(pk2+qk2)+rk, k=1,2,...,N. 

Then E r , . . . , EN compose an N-involutive system, that is (E, , E,) =O. 
Define a bilinear function Q,(&v) on RN 

Q,(5,rl)~((z-A)-11,77)=~ (z-hk)-‘tkvk= c. i?-‘(Am&+ 
k=l m=O 

The generating function of rk is given by (see Refs. 35,36) 

Q,(q,q) Q,(q.p) 
Q,(Pd) Q,(P,P) 

(3.3), 

(3.31, 

(3.3)3 

(3.3)4 

(3.3), 

(3.4) 

(3.5) 

(3.6) 

Thus the generating function of Ek is 

; (1-2((q,q)+(P,p)))(Q,(p,p)+Q,(q,q))+ 
Q,(q.q) Q,(svp) 
Q (p q> Q (p p> = i L . (3.7) 

z 9 z 9 k=’ z-xk 

Substituting Bq. (3.5) and (~--h~)-r=Z~=~ zmrn-l AT into both sides of Eq. (3.7), respectively, 
we get 

Proposition 3.2: Let 

F,=g hrEk, m=0,1,2 ,..., (3.8) 
k=l 

then 

Fo= M-2((q,q)+(P,P)))((P,P)+(q,q)), (3.9) 
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m (A’-‘q,q) (Ai-lq,p) 
F,=;(l -2((q,q)+(p,p)))((~mp,p)+(Amq,q))+ c j= 1 (Am-jp,q) (Am-jp,p) 

(3.10) 

and (Fk,F,)=O, Vk,l EZ+. 
Proposition 3.3: The Hamiltonian systems 

(F,,,):qt,=$v ~,,=2 (3.11) 

are completely integrable in the Liouville sense. 
Let Aj (j= 1,2,..., N) and y = (qj ,P~)~ be N different spectral parameters and corresponding 

solutions of Eq. (1.1). Consider the Bargmann constraint (Ref. 21): GoI L1= r = Cy= r VAj , that is, 

WP4) (PvP>- (474) 
ld= 1-2P((q,q)+(P,PN ’ u=l -2P((q,q)+(P,PN . 

(3.12) 

The nonlinearization of Eq. (1.1) under Eq. (3.12) gives the Hamiltonian system 

( 

1 

qx=Ap+ \. .&I * .I. - I %^ *,,- 

I 7,). 1 -w((q,q)+(P~P)) -P (1 --&(;;q;;(P;))+ p=q 
Ln): 

\ 
px= -hq+ 

-2(PYq)P+((P?P>-(qYq>)q 4(P9q)2+((P,P)-(q,q))2 JH 
1 - W((q4) + (PTP>) +p (1 -2P((q,q)+(P,P)))2 q= -dq ’ 

(3.13) 

with the Hamiltonian function 

4(P9q>2+((PYP)-(q,q))2 
H= ;(Apd+?i(kq)-P 4-gp((p p)+(q q)) * , > 

(3.14) 

Proposition 3.4: The Hamiltonian system (3.13) is completely integrable in the Liouville 
sense in the symplectic manifold (RzN ,dpAdq) and its involutive system is {F,}. 

Proofi Through some careful calculations, we obtain (H, F,) =O, m =0,1,2,... . So, the above 
result is correct. 

IV. THE INVOLUTIVE SOLUTIONS OF THE HIERARCHY (2.5) 

Denote the solution operators of the initial-value problems of the integrable Hamiltonian 
systems (H) and (F,) by gi and g: , respectively. (H,F,)=O implies their own flows g& g: 
commute (see Ref. 34). Then the involutive solution of the consistent equations (H) and (F,) 

(;i::;;J =&k( ;g;:;) (4.1) 

is a smooth function of (x,t,). 
Proposition 4.1: Let (q(x,t,),p(x,t,))T be an involutive solution of the compatible systems 

(H) and (F,). Then 

4w,) = 
2ib4) (PvP)-(q,q) 

1-2P((qvq)+(P,P)) ’ U(X7t?fJ= l-2P((q,q)+(p,p)) 
(4.2) 

satisfy the NLEEs 
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Pro05 Substituting Eqs. (3.11) and (3.10) into the rm derivative formula of Eq. (4.2), and 
noticing Gal a=1 = Z& r VXj and Eq. (2.3), through a lengthy calculations we can know that Eq. 
(4.3) holds. 

If we choose m =O,l in Proposition 4.1, then we can obtain the solution representations of 
Eqs. (1.4) and (1.5), respectively. Hence, we have 

Corollary 4.2: Let (~(x,t,,),p(~,r~))r and (~(x,r,),p(x,t,))r be an involutive solution of the 
compatible systems (H), (Fe) and (H), (F,), respectively. Let 

2i(P(xvrj)v4(X,fj)) 

u(xytj)= ' -2P((4(x,rj),q(x,~j))+(Po,P(x,ti))) ' 
(4.4) 

(P(x,tj>,P(x,fj))-(4(X,fj)~4(X,fj)) 

U(X'r')'1-2P((q(x,fj),q(x,~j))+(P(X~fj),p(X,fj))) ' 
(4.5) 

Then r(x,t,J and r(x,r,> satisfy the nonlinear equation 

rto= -r,-2ip)r]% (4.7) 

and the GDNSE 

r’,=$rxx-ilr12r-p(lr12r)x-pIr12r,-2ip21r14r, (4.8) 

respectively. 
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