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Abstract

This paper is devoted to an integrable two-component Camassa–Holm system with cubic nonlinearity, 
which includes the cubic Camassa–Holm equation (also called the Fokas–Olver–Rosenau–Qiao equation) 
as a special case. The one peaked solitons (peakons) and two peakon solutions are described in an explicit 
formula. Then, the local well-posedness for the Cauchy problem of the system is studied. Moreover, we 
target at the precise blow-up scenario for strong solutions to the system, and establish a new blow-up result 
with respect to the initial data.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The well-known Camassa–Holm (CH) equation [3]
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mt + umx + 2uxm = 0, m = u − uxx,

has been studied extensively in the past two decades. It models the unidirectional propagation 
of shallow water waves over a flat bottom, and u(t, x) stands for the fluid velocity at time t in 
the spatial x direction [3,15,25]. The CH equation is also a model for the propagation of axially 
symmetric waves in hyperelastic rods [13]. It has a bi-Hamiltonian structure and is completely 
integrable [3,17]. Its solitary waves vanishing at both infinities are peakons [4], they are orbitally 
stable [12], and the CH equation also possesses the algebro-geometric solutions on a symplectic 
submanifold [31]. It should be stressed that the peakons replicate a feature that is characteris-
tic for the waves of great height — waves of largest amplitude that are exact solutions of the 
governing equations for irrotational water waves, cf. [6,10].

It has been proved that the Cauchy problem for the CH equation is locally well-posed in [8,14]. 
Moreover, it has both global strong solutions [5,7,8] and solutions with finite time blow-up [5,
7–9]. Furthermore, wave breaking (namely, the wave remains bounded while its slope becomes 
unbounded in finite time [35]) is the only way for the CH equation to develop singularities in 
finite time [9]. On the other hand, it also has global weak solutions after the strong solution 
to the CH equation blows up in finite time [2,11,37]. In comparison with the celebrated KdV 
equation, the advantage of the CH equation lies in the fact that the CH equation not only has 
peakon solutions, but also models wave breaking.

The nonlinear term in the CH equation is quadratic. However, there do exist integrable peakon 
systems with cubic nonlinearity, which include the cubic CH equation (also called the Fokas–
Olver–Rosenau–Qiao (FORQ) equation)

mt + ((u2 − u2
x)m)x = 0, m = u − uxx, (1.1)

and the Novikov equation

mt + u2mx + 3uuxm = 0, m = u − uxx.

Eq. (1.1) was proposed independently in [18,19,30,32]. Its Lax pair and some explicit soliton 
solutions have been studied in [32]. Recently, the orbital stability of the train of peakons, as 
well as the Hölder continuity for Eq. (1.1) have been studied in [27] and [23], respectively. The 
Novikov equation has been proposed in [29] and its Lax pair, bi-Hamiltonian structure, peakon 
stability, well-posedness, blow-up phenomena and global solutions were already studied in [22,
24,29,36].

In this paper, we consider the following integrable two-component Camassa–Holm system 
with cubic nonlinearity proposed in [34]:

{
mt + [((uv − uxvx) − (uvx − uxv))m]x = 0,

nt + [((uv − uxvx) − (uvx − uxv))n]x = 0,
(1.2)

where m = u − uxx and n = v − vxx . For our convenience, we want to call equation (1.2) the 
SQQ system. System (1.2) is a multi-component extension of Eq. (1.1), since it can be reduced to 
Eq. (1.1) as v ≡ u. Integrability of the system (1.2) is shown in [34], and particularly, this system 
possesses the following conservation laws:
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H1 =
∫
R

mdx =
∫
R

udx, H2 =
∫
R

ndx =
∫
R

vdx, (1.3)

H3 =
∫
R

m(v − vx)dx,

and

H4 =
∫
R

(u + ux)(v − vx)
2mdx.

Moreover, some explicit solutions to the system (1.2) such as the cusped solitons (cuspons) and 
W/M-shape solitons have been given in [34]. Now, let us set up the Cauchy problem of the SQQ 
system as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mt + (
(uv − uxvx) − (uvx − uxv)

)
mx = −(

(uxn + vxm) + (un − vm)
)
m,

nt + (
(uv − uxvx) − (uvx − uxv)

)
nx = −(

(uxn + vxm) + (un − vm)
)
n,

m(0, x) = m0(x),

n(0, x) = n0(x).

(1.4)

By using an approach similar to the one in [38], the analytic solutions to the system (1.4) can 
readily be proved in both variables, globally in space and locally in time. However, the main goal 
of this paper is to study explicit two-peakon solutions to the SQQ system (1.2), and the blow-up 
phenomena for strong solutions to the system (1.4).

To this end, we mainly make good use of the fine structure of the system (1.4). When deriving 
the precise blow-up scenario for the solutions to this system, we first apply the transport equation 
theory to obtain a blow-up criterion (see Theorem 4.1 below), and then exploit the characteris-
tic ODE related to the system (1.4) to construct some invariant properties of the solutions (see 
Lemma 4.4 below), which eventually leads to the precise blow-up scenario (see Theorem 4.2
below).

On the other hand, we directly consider the transport equation in terms of (uxn + vxm) +
(un − vm) which is the slope of the term (uv − uxvx) − (uvx − uxv) (see Lemma 4.5 below) to 
derive a new blow-up result with respect to the initial data (see Theorem 4.3 below), where we 
observe that the system (1.4) possesses the conservation laws H1 and H2 in (1.3).

The rest of our paper is organized as follows. In Section 2, we discuss the explicit peakon 
solutions of the system (1.2). In Section 3, we state the local well-posedness for the system (1.4)
in Sobolev and Besov spaces. In Section 4, we derive the precise blow-up scenario and a new 
blow-up result for the strong solutions to the system (1.4).

2. Explicit peakon solutions

In this section, we derive the explicit peakon solutions and discuss the peakon interactions of 
the system (1.2). First of all, taking the convolution with the Green function p(x) � 1e−|x| for 
2
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the Helmholtz operator (1 − ∂2
x ), one can rewrite the system (1.2) as the following weak form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + (u + ux)(v − vx)ux

= −∂xp ∗ [((u + ux)(v − vx))x ux] − p ∗ [((u + ux)(v − vx))x u],
vt + (u + ux)(v − vx)vx

= −∂xp ∗ [((u + ux)(v − vx))x vx] − p ∗ [((u + ux)(v − vx))x v].
(2.1)

Let us assume the single peakon solution of the system (1.2) shows up in the following form 
[33]:

{
u(t, x) = c1e

−|x−At |,
v(t, x) = c2e

−|x−At |.

Here c1 and c2 are two arbitrary constants, and A is the traveling wave speed to be determined 
by c1 and c2. The derivatives of the above expressions of u(t, x) and v(t, x) do not exist at 
x = At , thus they cannot directly satisfy the system (1.2) in the classical sense. However, in the 
weak sense, we are able to present out the expressions of ut , vt , ux and vx with the help of 
distribution:

ut = Ac1sgn(x − At)E = −Ac1Ex, vt = Ac2sgn(x − At)E = −Ac2Ex, (2.2)

ux = −c1sgn(x − At)E = c1Ex, vx = −c2sgn(x − At)E = c2Ex, (2.3)

where E = e−|x−At |. Substituting (2.2) and (2.3) into the weak form (2.1), taking the integrals 
with the test function φ = φ(x) on R in the distribution sense, and noticing the following key 
identities: ∫

utφdx = Ac1

∫
Eφ′(x)dx,

∫
vtφdx = Ac2

∫
Eφ′(x)dx,

∫
(u + ux)(v − vx)uxφdx = 0,

∫
(u + ux)(v − vx)vxφdx = 0,

∫
−∂xp ∗ [((u + ux)(v − vx))x ux]φdx = 2c2

1c2

∫
p ∗

(
EE2

x − ExxE
2
x

)
φ′(x)dx

= 2c2
1c2

3

∫
Eφ′(x)dx,

∫
−∂xp ∗ [((u + ux)(v − vx))x vx]φdx = 2c2

2c1

∫
p ∗

(
EE2

x − ExxE
2
x

)
φ′(x)dx

= 2c2
2c1

∫
Eφ′(x)dx,
3
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∫
−p ∗ [((u + ux)(v − vx))x u]φdx = 2c2

1c2

∫
p ∗

(
E2Ex − EExExx

)
φdx = 0,∫

−p ∗ [((u + ux)(v − vx))x v]φdx = 2c2
2c1

∫
p ∗

(
E2Ex − EExExx

)
φdx = 0,

one may immediately know that A must satisfy

A = 2

3
c1c2. (2.4)

So, we obtain the following peakon solutions to the system (1.2):

{
u(t, x) = c1e

−|x− 2
3 c1c2t |,

v(t, x) = c2e
−|x− 2

3 c1c2t |.

Next, we derive the two-peakon solutions of the system (1.2), which possess the following 
form: {

u(t, x) = p1e
−|x−q1(t)| + p2e

−|x−q2(t)|,
v(t, x) = r1e

−|x−q1(t)| + r2e
−|x−q2(t)|,

(2.5)

where p1, p2, r1, r2, q1, q2 are the functions of t to be determined.
By adopting the procedure similar to the single peakon derivation described above and sub-

stituting (2.5) into the weak from (2.1), we have

⎧⎪⎨
⎪⎩

p1,t = p2,t = r1,t = r2,t = 0,

q1,t = − 1
3p1r1 + 1

2

[
p1r2 (sgn(q1 − q2) − 1) − p2r1 (sgn(q1 − q2) + 1)

]
e−|q1−q2|,

q2,t = − 1
3p2r2 + 1

2

[
p1r2 (sgn(q1 − q2) − 1) − p2r1 (sgn(q1 − q2) + 1)

]
e−|q1−q2|.

(2.6)

From the first equation of (2.6), we know

p1 = A1, p2 = A2, r1 = B1, r2 = B2,

where A1, A2, B1, and B2 are four integration constants.
If A1B1 = A2B2, then we have

{
q1(t) = −2

{
− 1

3A1B1 + 1
2

[
A1B2 (sgn(C1) − 1) − A2B1 (sgn(C1) + 1)

]
e−|C1|

}
t + C1

2 ,

q2(t) = q1(t) − C1.

If A1B1 �= A2B2, then we arrive at

{
q1(t) = 2

3A1B1t + �(t),

q2(t) = 2
3A2B2t + �(t),

where
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Fig. 1. The two-peakon solution for the potential u(t, x) given by (2.7). Red line: t = 1.5; Blue line: t = 0.5; Brown line: 
t = 0 (collision); Green line: t = −0.5; Black line: t = −1.75. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

�(t) = −3(A1B2 + A2B1)

2|A1B1 − A2B2| sgn(t)
(
e− 2

3 |(A1B1−A2B2)t | − 1
)

+ 3(A1B2 − A2B1)

2(A1B1 − A2B2)
e− 2

3 |(A1B1−A2B2)t |.

In particular, taking A1 = B1 = 1, A2 = 2, and B2 = 5 sends the two-peakon solution to the 
following form

{
u(t, x) = e−|x−q1(t)| + 2e−|x−q2(t)|,
v(t, x) = e−|x−q1(t)| + 5e−|x−q2(t)|,

(2.7)

where

⎧⎪⎨
⎪⎩

q1(t) = 2t

3
− 7

6
sgn(t)

(
e−6|t | − 1

) − 1
2e−6|t |,

q2(t) = 20t

3
− 7

6
sgn(t)

(
e−6|t | − 1

) − 1
2e−6|t |.

For the potential u(t, x), the two-peakon collides at the moment t = 0, since q1(0) = q2(0) = 0. 
For t > 0, the tall and fast peakon with the amplitude 2 and peak position q2 chases after the 
short and slow peakon with the amplitude 1 and peak position q1. At the moment of t = 0, the 
two-peakon overlaps. After the collision (t < 0), the two-peakon separates, and the tall and fast 
peakon surpasses the short and slow one. Similarly, we may discuss the collision of the two-
peakon for the potential v(t, x). See Figs. 1 and 2 for the two-peakon dynamics of the potentials 
u(t, x) and v(t, x).
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Fig. 2. The two-peakon solution for the potential v(t, x) given by (2.7). Red line: t = 1.5; Blue line: t = 0.5; Brown line: 
t = 0 (collision); Green line: t = −0.5; Black line: t = −1.5. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

3. Local well-posedness

In this section, we will state the local well-posedness for the system (1.4). To begin with, 
applying Kato’s semigroup theory [26] and going along the similar line of the proof in [16], one 
can readily prove the following local well-posedness result in Sobolev space.

Theorem 3.1. Suppose that (m0, n0) ∈ Hs(R) × Hs(R) with s ≥ 1. There exists a maximal 
existence time T = T (||m0||Hs(R), ||n0||Hs(R)) > 0, and a unique solution (m, n) to the system 
(1.4) such that

(m,n) ∈ C([0, T );Hs(R) × Hs(R)) ∩ C1([0, T );Hs−1(R) × Hs−1(R)).

Moreover, the solution depends continuously on the initial data, that is, the mapping (m0, n0) 	→
(m, n):

Hs(R) × Hs(R) → C([0, T );Hs(R) × Hs(R)) ∩ C1([0, T );Hs−1(R) × Hs−1(R))

is continuous.

On the other hand, taking advantage of the transport equation theory, Littlewood–Paley’s de-
composition and some fine estimates of Besov spaces [1], one can easily establish the local 
well-posedness for system (1.4) in Besov space by means of similar arguments to those in [39]. 
More precisely,

Theorem 3.2. Let 1 ≤ p, r ≤ ∞ and s > max(1 − 1
p
, 1

p
, 12 ) but s �= 1 + 1

p
. Assume that (m0, n0) ∈

Bs
p,r (R) × Bs

p,r (R), and set
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Es
p,r (T ) � C([0, T ];Bs

p,r (R)) ∩ C1([0, T ];Bs−1
p,r (R)), if r < ∞,

Es
p,∞(T ) � L∞(0, T ;Bs

p,∞(R)) ∩ Lip (0, T ;Bs−1
p,∞(R)).

Then there exists a time T > 0 such that (m, n) ∈ Es
p,r (T ) × Es

p,r (T ) is the unique solution to 
the system (1.4), and the mapping (m0, n0) 	→ (m, n) is continuous from Bs

p,r (R) ×Bs
p,r (R) into

C([0, T ];Bs′
p,r (R) × Bs′

p,r (R)) ∩ C1([0, T ];Bs′−1
p,r (R) × Bs′−1

p,r (R))

for all s′ < s if r = ∞, and s′ = s if 1 ≤ r < ∞.

Remark 3.1. (1) Note that for every s ∈ R, Bs
2,2(R) = Hs(R). Theorem 3.2 holds true in the 

corresponding Sobolev spaces with 1
2 < s �= 3

2 , which almost improves the result of Theorem 3.1
where s ≥ 1 is required. Therefore, the conclusion of Theorem 3.1 holds true for initial data 
(m0, n0) ∈ Hs(R) × Hs(R) with s > 1

2 , or for all initial data (u0, v0) ∈ Hs(R) × Hs(R) with 
s > 5

2 .
(2) The above maximal existence time T can be proved independent of the regularity index s, 

which will be shown in Remark 4.1 below.

4. Blow-up

In this section, we will derive the precise blow-up scenario of strong solutions to the system 
(1.4), and then state a new blow-up result with respect to the initial data. Let us first prove a 
blow-up criterion for the system (1.4). For this, we need some a priori estimates of the following 
transport equation:

(T E)

{
∂tf + v ∂xf = F,

f |t=0 = f0.

Lemma 4.1. (See [1].) Let s > − 1
2 . Assume that f0 ∈ Hs(R), F ∈ L1(0, T ; Hs(R)), and ∂xv

belongs to L1(0, T ; Hs−1(R)) if s > 3
2 , or to L1(0, T ; H 1

2 (R) ∩ L∞(R)) if − 1
2 < s ≤ 3

2 . If 
f ∈ L∞(0, T ; Hs(R)) ∩ C([0, T ]; S ′(R)) solves (T E), then f ∈ C([0, T ]; Hs(R)). Moreover, 
for all s �= 3

2 , there exists a constant C = C(s) > 0 such that for all t ∈ [0, T ],

||f (t)||Hs ≤ ||f0||Hs +
t∫

0

||F(τ)||Hs dτ + C

t∫
0

V (τ)||f (τ)||Hs dτ

with

V (t)�
{

||∂xv(t)||
H

1
2 ∩L∞ , if − 1

2 < s < 3
2 ,

||∂xv(t)||Hs−1 , if s > 3
2 .
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Lemma 4.2. (See [20].) Let 0 < s < 1. Assume that f0 ∈ Hs(R), F ∈ L1(0, T ; Hs(R)), and 
v, ∂xv ∈ L1(0, T ; L∞(R)). If f ∈ L∞(0, T ; Hs(R)) ∩ C([0, T ]; S ′(R)) solves (T E), then f ∈
C([0, T ]; Hs(R)). Moreover, there exists a constant C = C(s) > 0 such that for all t ∈ [0, T ],

||f (t)||Hs ≤ ||f0||Hs + C

t∫
0

||F(τ)||Hs dτ + C

t∫
0

V (τ)||f (τ)||Hs dτ

with V (t) � ||v(t)||L∞ + ||∂xv(t)||L∞ .

In addition, the following one-dimensional Morse-type estimates are also required.

Proposition 4.1. (See [1,20].) For all s > 0, there exists a positive constant C independent of f
and g, such that

||fg||Hs(R) ≤ C(||f ||Hs(R)||g||L∞(R) + ||g||Hs(R)||f ||L∞(R)),

and

||f ∂xg||Hs(R) ≤ C(||f ||Hs+1(R)||g||L∞(R) + ||f ||L∞(R)||∂xg||Hs(R)).

Theorem 4.1. Let (m0, n0) ∈ Hs(R) × Hs(R) with s > 1
2 and T be the maximal existence time 

of the solution (m, n) to the system (1.4), which is guaranteed by Remark 3.1. If T < ∞, then

T∫
0

(||m(τ, ·)||L∞ + ||n(τ, ·)||L∞)2dτ = ∞.

Proof. We will prove the theorem by induction with respect to the regularity index s (s > 1
2 ) as 

follows.

Step 1. For s ∈ ( 1
2 , 1), by Lemma 4.2 and the system (1.4), we have

||m(t)||Hs

≤ ||m0||Hs + C

t∫
0

||((uxn + vxm) + (un − vm)
)
m(τ)||Hs dτ + C

t∫
0

||m(τ)||Hs

×(||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ

and

||n(t)||Hs

≤ ||n0||Hs + C

t∫
||((uxn + vxm) + (un − vm)

)
n(τ)||Hs dτ + C

t∫
||n(τ)||Hs
0 0
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× (||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ.

Noting that u = (1 − ∂2
x )−1m = p ∗m with p(x) � 1

2e−|x| (x ∈R), ux = (∂xp) ∗m, uxx = u −m

and ||p||L1 = ||∂xp||L1 = 1, together with the Young inequality, for all s ∈ R, we have

||u||L∞ , ||ux ||L∞ , ||uxx ||L∞ ≤ C||m||L∞ (4.1)

and

||u||Hs , ||ux ||Hs , ||uxx ||Hs ≤ C||m||Hs . (4.2)

Similarly, the identity v = p ∗ n ensures

||v||L∞ , ||vx ||L∞ , ||vxx ||L∞ ≤ C||n||L∞ (4.3)

and

||v||Hs , ||vx ||Hs , ||vxx ||Hs ≤ C||n||Hs . (4.4)

Then Proposition 4.1 gives

||((uxn + vxm) + (un − vm)
)
m||Hs

≤ C||(uxn + vxm) + (un − vm)||Hs ||m||L∞

+ C||(uxn + vxm) + (un − vm)||L∞||m||Hs

≤ C(||m||L∞||n||L∞||m||Hs + ||m||2L∞||n||Hs ) (4.5)

and

||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞

≤ C||m||L∞||n||L∞ . (4.6)

Hence,

||m(t)||Hs ≤ ||m0||Hs + C

t∫
0

||m(τ)||L∞||n(τ)||L∞||m(τ)||Hs + ||m(τ)||2L∞||n(τ)||Hs dτ.

Likewise,

||n(t)||Hs ≤ ||n0||Hs + C

t∫
0

||n(τ)||2L∞||m(τ)||Hs + ||m(τ)||L∞||n(τ)||L∞||n(τ)||Hs dτ.

Thus, we have
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||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||L∞ + ||n||L∞)2(||m||Hs + ||n||Hs )dτ. (4.7)

Taking advantage of Gronwall’s inequality, one gets

||m(t)||Hs + ||n(t)||Hs

≤ (||m0||Hs + ||n0||Hs )eC
∫ t

0 (||m||L∞+||n||L∞ )2dτ . (4.8)

Therefore, if T < ∞ satisfies 
∫ T

0 (||m(τ)||L∞ + ||n(τ)||L∞)2dτ < ∞, then we deduce from (4.8)
that

lim sup
t→T

(||m(t)||Hs + ||n(t)||Hs ) < ∞, (4.9)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the 
proof of the theorem for s ∈ ( 1

2 , 1).

Step 2. For s ∈ [1, 32 ), applying Lemma 4.1 to the first equation of the system (1.4), we get

||m(t)||Hs ≤ ||m0||Hs +
t∫

0

||((uxn + vxm) + (un − vm)
)
m(τ)||Hs dτ

+ C

t∫
0

||m(τ)||Hs ||(uxn + vxm) + (un − vm)||
H

1
2 ∩L∞dτ

Note that

||(uxn + vxm) + (un − vm)||
H

1
2 ∩L∞ ≤ C||(uxn + vxm) + (un − vm)||

H
1
2 +ε0

≤ C||m||
H

1
2 +ε0

||n||
H

1
2 +ε0

,

where ε0 ∈ (0, 12 ). Using (4.5) and the fact that H
1
2 +ε0(R) ↪→ H

1
2 (R) ∩ L∞(R) leads to

||m(t)||Hs ≤ ||m0||Hs + C

t∫
0

||m||
H

1
2 +ε0

||n||
H

1
2 +ε0

||m||Hs + ||m||2
H

1
2 +ε0

||n||Hs dτ.

For the second equation of the system (1.4), we can deal with it in a similar way and obtain that

||n(t)||Hs ≤ ||n0||Hs + C

t∫
||n||2

H
1
2 +ε0

||m||Hs + ||m||
H

1
2 +ε0

||n||
H

1
2 +ε0

||n||Hs dτ.
0
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Hence,

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||
H

1
2 +ε0

+ ||n||
H

1
2 +ε0

)2(||m||Hs + ||n||Hs )dτ.

Thanks to Gronwall’s inequality again, we have

||m(t)||Hs + ||n(t)||Hs

≤ (||m0||Hs + ||n0||Hs )e
C

∫ t
0 (||m||

H
1
2 +ε0

+||n||
H

1
2 +ε0

)2dτ

. (4.10)

Therefore, if T < ∞ satisfies 
∫ T

0 (||m(τ)||L∞ + ||n(τ)||L∞)2dτ < ∞, then we deduce from the 

uniqueness of the solution to the system (1.4) and (4.9) with 1
2 + ε0 ∈ ( 1

2 , 1) instead of s that

||m(t)||
H

1
2 +ε0

+ ||n(t)||
H

1
2 +ε0

is uniformly bounded in t ∈ (0, T ).

This along with (4.10) implies that

lim sup
t→T

(||m(t)||Hs + ||n(t)||Hs ) < ∞, (4.11)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the 
proof of the theorem for s ∈ [1, 32 ).

Step 3. For s ∈ (1, 2), differentiating the system (1.4) with respect to x, we have

∂tmx + (
(uv − uxvx) − (uvx − uxv)

)
∂xmx

= −2
(
(uxn + vxm) + (un − vm)

)
mx − (

(uxn + vxm) + (un − vm)
)
x
m

� R1(t, x)

and

∂tnx + (
(uv − uxvx) − (uvx − uxv)

)
∂xnx

= −2
(
(uxn + vxm) + (un − vm)

)
nx − (

(uxn + vxm) + (un − vm)
)
x
n

� R2(t, x)

By Lemma 4.2 with s − 1 ∈ (0, 1), we get
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||mx(t)||Hs−1

≤ ||∂xm0||Hs−1 + C

t∫
0

||R1(τ )||Hs−1dτ + C

t∫
0

||mx(τ)||Hs−1

× (||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ

and

||nx(t)||Hs−1

≤ ||∂xn0||Hs−1 + C

t∫
0

||R2(τ )||Hs−1dτ + C

t∫
0

||nx(τ )||Hs−1

× (||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ

Due to Proposition 4.1 and (4.1)–(4.4), we have

|| − 2
(
(uxn + vxm) + (un − vm)

)
mx ||Hs−1

≤ C
(||(uxn + vxm) + (un − vm)||Hs ||m||L∞

+ ||(uxn + vxm) + (un − vm)||L∞||mx ||Hs−1

)
≤ C||m||L∞||n||L∞||m||Hs + C||m||2L∞||n||Hs ,

and

|| − (
(uxn + vxm) + (un − vm)

)
x
m||Hs−1

≤ C
(||m||Hs ||(uxn + vxm) + (un − vm)||L∞

+ ||m||L∞||(uxn + vxm) + (un − vm)||Hs

)
≤ C||m||L∞||n||L∞||m||Hs + C||m||2L∞||n||Hs ,

which together with (4.6) yields

||mx(t)||Hs−1 ≤ ||m0||Hs + C

t∫
0

||m||L∞||n||L∞||m||Hs + ||m||2L∞||n||Hs dτ.

Likewise,

||nx(t)||Hs−1 ≤ ||n0||Hs + C

t∫
0

||n||2L∞||m||Hs + ||m||L∞||n||L∞||n||Hs dτ.

Thus, we have
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||mx(t)||Hs−1 + ||nx(t)||Hs−1

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||L∞ + ||n||L∞)2(||m||Hs + ||n||Hs )dτ.

This along with (4.7) with s − 1 ∈ (0, 1) instead of s ensures

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||L∞ + ||n||L∞)2(||m||Hs + ||n||Hs )dτ.

Similar to Step 1, we can easily prove the theorem for s ∈ (1, 2).

Step 4. For s = k ∈ N and k ≥ 2, differentiating the system (1.4) k − 1 times with respect to x, 
we get

[∂t + (
(uv − uxvx) − (uvx − uxv)

)
∂x]∂k−1

x m

= −
k−2∑
l=0

Cl
k−1∂

k−l−1
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x m

− ∂k−1
x [((uxn + vxm) + (un − vm)

)
m]

� F1(t, x)

and

[∂t + (
(uv − uxvx) − (uvx − uxv)

)
∂x]∂k−1

x n

= −
k−2∑
l=0

Cl
k−1∂

k−l−1
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x n

− ∂k−1
x [((uxn + vxm) + (un − vm)

)
n]

� F2(t, x),

which together with Lemma 4.1 imply

||∂k−1
x m(t)||H 1 ≤ ||m0||Hk +

t∫
0

||F1(τ )||H 1dτ + C

t∫
0

||m(τ)||Hk

× ||(uxn + vxm) + (un − vm)||
H

1
2 ∩L∞dτ

and
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||∂k−1
x n(t)||H 1 ≤ ||n0||Hk +

t∫
0

||F2(τ )||H 1dτ + C

t∫
0

||n(τ)||Hk

× ||(uxn + vxm) + (un − vm)||
H

1
2 ∩L∞dτ.

Making use of Proposition 4.1 and (4.1)–(4.4) again, one infers

|| −
k−2∑
l=0

Cl
k−1∂

k−l−1
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x m||H 1

≤ C(k)

k−2∑
l=0

(||∂k−l−1
x

(
(uv − uxvx) − (uvx − uxv)

)||L∞||m||Hl+2

+ ||∂k−l−1
x

(
(uv − uxvx) − (uvx − uxv)

)||H 1 ||∂l+1
x m||L∞)

≤ C(k)

k−2∑
l=0

(||(uv − uxvx) − (uvx − uxv)||
H

k−l− 1
2 +ε0

||m||Hl+2

+ ||(uv − uxvx) − (uvx − uxv)||Hk−l ||m||
H

l+ 3
2 +ε0

)

≤ C(k)(||(uv − uxvx) − (uvx − uxv)||
H

k− 1
2 +ε0

||m||Hk

+ ||(uv − uxvx) − (uvx − uxv)||Hk ||m||
Hk− 1

2 +ε0
)

≤ C(k)(||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||m||Hk + ||m||2
H

k− 1
2 +ε0

||n||Hk ), (4.12)

|| − ∂k−1
x [((uxn + vxm) + (un − vm)

)
m]||H 1

≤ C||((uxn + vxm) + (un − vm)
)
m||Hk

≤ C||m||L∞||n||L∞||m||Hk + ||(uxn + vxm) + (un − vm)||Hk ||m||L∞

≤ C(||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||m||Hk + ||m||2
H

k− 1
2 +ε0

||n||Hk ), (4.13)

and

||(uxn + vxm) + (un − vm)||
H

1
2 ∩L∞

≤ C||(uxn + vxm) + (un − vm)||
H

k− 1
2 +ε0

≤ C||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

,

where ε0 ∈ (0, 12 ) and we used the fact that

Hk− 1
2 +ε0(R) ↪→ H

1
2 +ε0(R) ↪→ H

1
2 (R) ∩ L∞(R) with k ≥ 2. (4.14)

Thus, we get
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||∂k−1
x m(t)||H 1 ≤ ||m0||Hk + C

t∫
0

(||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||m||Hk

+ ||m||2
H

k− 1
2 +ε0

||n||Hk )dτ.

Similarly,

||∂k−1
x n(t)||H 1 ≤ ||n0||Hk + C

t∫
0

(||n||2
H

k− 1
2 +ε0

||m||Hk

+ ||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||n||Hk )dτ.

Then,

||∂k−1
x m(t)||H 1 + ||∂k−1

x n(t)||H 1

≤ ||m0||Hk + ||n0||Hk + C

t∫
0

(||m||
H

k− 1
2 +ε0

+ ||n||
H

k− 1
2 +ε0

)2(||m||Hk + ||n||Hk )dτ,

which together with Gronwall’s inequality and (4.10) with s = 1 imply

||m(t)||Hk + ||n(t)||Hk

≤ (||m0||Hk + ||n0||Hk )e
C

∫ t
0 (||m||

H
k− 1

2 +ε0
+||n||

H
k− 1

2 +ε0
)2dτ

. (4.15)

If T < ∞ satisfies 
∫ T

0 (||m(τ)||L∞ + ||n(τ)||L∞)2dτ < ∞, applying Step 3 with 3
2 + ε0 ∈ (1, 2)

and by induction with respect to k ≥ 2, we see that ||m(t)||
H

k− 1
2 +ε0

+||n(t)||
H

k− 1
2 +ε0

is uniformly 

bounded in t ∈ (0, T ). By (4.15), we have

lim sup
t→T

(||m(t)||Hk + ||n(t)||Hk ) < ∞, (4.16)

which contradicts the assumption that T < ∞ is the maximal existence time. This completes the 
proof of the theorem for s = k ∈N and k ≥ 2.

Step 5. For s ∈ (k, k + 1), k ∈ N and k ≥ 2, differentiating the system (1.4) k times with respect 
to x, we get

[∂t + (
(uv − uxvx) − (uvx − uxv)

)
∂x]∂k

xm

= −
k−1∑
l=0

Cl
k∂

k−l
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x m

− ∂k
x [((uxn + vxm) + (un − vm)

)
m]

� G1(t, x)
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and

[∂t + (
(uv − uxvx) − (uvx − uxv)

)
∂x]∂k

xn

= −
k−1∑
l=0

Cl
k∂

k−l
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x n

− ∂k
x [((uxn + vxm) + (un − vm)

)
n]

� G2(t, x),

which together with Lemma 4.2 with s − k ∈ (0, 1) imply

||∂k
xm(t)||Hs−k

≤ ||∂k
xm0||Hs−k + C

t∫
0

||G1(τ )||Hs−k dτ + C

t∫
0

||∂k
xm(τ)||Hs−k

× (||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ

and

||∂k
xn(t)||Hs−k

≤ ||∂k
xn0||Hs−k + C

t∫
0

||G2(τ )||Hs−k dτ + C

t∫
0

||∂k
xn(τ)||Hs−k

× (||(uv − uxvx) − (uvx − uxv)||L∞ + ||(uxn + vxm) + (un − vm)||L∞
)
dτ.

By (4.14) and using the procedure similar to (4.12)–(4.13), we have

|| −
k−1∑
l=1

Cl
k∂

k−l
x

(
(uv − uxvx) − (uvx − uxv)

)
∂l+1
x m||Hs−k

+ || − ∂k
x [((uxn + vxm) + (un − vm)

)
m]||Hs−k

≤ C(k)(||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||m||Hs + ||m||2
H

k− 1
2 +ε0

||n||Hs ),

and

|| − C0
k ∂k

x

(
(uv − uxvx) − (uvx − uxv)

)
mx ||Hs−k

≤ C(||mx ||Hs−k+1 ||∂k−1
x

(
(uv − uxvx) − (uvx − uxv)

)||L∞

+ ||mx ||L∞||∂k
x

(
(uv − uxvx) − (uvx − uxv)

)||Hs−k )

≤ C(||m||Hs−k+2 ||(uv − uxvx) − (uvx − uxv)||
H

k− 1
2 +ε0

+ ||m||
k− 1 +ε

||(uv − uxvx) − (uvx − uxv)||Hs )

H 2 0
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≤ C(||m||
H

k− 1
2 +ε0

||n||
H

k− 1
2 +ε0

||m||Hs + ||m||2
H

k− 1
2 +ε0

||n||Hs ).

Thus, we obtain

||∂k
xm(t)||Hs−k + ||∂k

xn(t)||Hs−k

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||
H

k− 1
2 +ε0

+ ||n||
H

k− 1
2 +ε0

)2(||m||Hs + ||n||Hs )dτ.

This along with (4.7) with s − k ∈ (0, 1) instead of s lead to

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C

t∫
0

(||m||
H

k− 1
2 +ε0

+ ||n||
H

k− 1
2 +ε0

)2(||m||Hs + ||n||Hs )dτ.

By using Gronwall’s inequality, Step 3 with 3
2 + ε0 ∈ (1, 2) and the similar argument as shown 

in Step 4, we can arrive at the desired result.
In summary, the above 5 steps complete the proof of the theorem. �

Remark 4.1. The maximal existence time T in Theorem 4.1 can be chosen independent of 
the regularity index s. Indeed, let (m0, n0) ∈ Hs × Hs with s > 1

2 and some s′ ∈ ( 1
2 , s). Then 

Remark 3.1 ensures that there exists a unique Hs × Hs (resp., Hs′ × Hs′
) solution (ms, ns)

(resp., (ms′ , ns′)) to the system (1.4) with the maximal existence time Ts (resp., Ts′ ). Since 
Hs ↪→ Hs′

, it follows from the uniqueness that Ts ≤ Ts′ and (ms, ns) ≡ (ms′ , ns′) on [0, Ts). 
On the other hand, if we suppose that Ts < Ts′ , then (ms′ , ns′) ∈ C([0, Ts]; Hs′ × Hs′

). Hence 
(ms, ns) ∈ L2(0, Ts; L∞ × L∞), which is a contradiction to Theorem 4.1. Therefore, Ts = Ts′ .

Now we turn our attention to the precise blow-up scenario for sufficiently regular solutions 
to the system (1.4). For this, motivated by [5,28], we first consider the characteristic ordinary 
differential equation as follows:{

dq(t,x)
dt

= (
(uv − uxvx) − (uvx − uxv)

)
(t, q(t, x)), (t, x) ∈ (0, T ) ×R,

q(0, x) = x, x ∈ R,
(4.17)

for the flow generated by (uv − uxvx) − (uvx − uxv).
The following lemmas are very crucial to study the blow-up phenomena of strong solutions 

to the system (1.4).

Lemma 4.3. Let (m0, n0) ∈ Hs(R) ×Hs(R) with s > 1
2 and T > 0 be the maximal existence time 

of the corresponding solution (m, n) to the system (1.4). Then Eq. (4.17) has a unique solution 
q ∈ C1([0, T ) ×R; R). Moreover, the mapping q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

⎛
⎝ t∫

0

(
(uxn + vxm) + (un − vm)

)
(s, q(s, x))ds

⎞
⎠ > 0, (4.18)

for all (t, x) ∈ [0, T ) ×R.
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Proof. Since (u, v) ∈ C([0, T ); Hs(R) × Hs(R)) ∩ C1([0, T ); Hs−1(R) × Hs−1(R)) with 
s > 5

2 , it follows from the fact Hs−1(R) ↪→ Lip(R) with s > 5
2 that (uv −uxvx) − (uvx −uxv) is 

bounded and Lipschitz continuous in the space variable x and of class C1 in time variable t . Then 
the classical ODE theory ensures that Eq. (4.17) has a unique solution q ∈ C1([0, T ) ×R; R).

Differentiating Eq. (4.17) with respect to x gives

{
dqx(t,x)

dt
= (

(uxn + vxm) + (un − vm)
)
(t, q(t, x))qx(t, x), (t, x) ∈ (0, T ) ×R,

qx(0, x) = 1, x ∈R,

which leads to (4.18).
On the other hand, ∀ t < T , by the Sobolev embedding theorem, we have

sup
(s,x)∈[0,T )×R

∣∣((uxn + vxm) + (un − vm)
)
(s, x)

∣∣ < ∞,

which along with (4.18) implies that there exists a constant C > 0 such that

qx(t, x) ≥ e−Ct , ∀ (t, x) ∈ [0, T ) ×R.

This implies that the mapping q(t, ·) is an increasing diffeomorphism of R before blow-up. 
Therefore, we complete the proof of Lemma 4.3. �
Lemma 4.4. Let (m0, n0) ∈ Hs(R) × Hs(R) with s > 1

2 and T > 0 be the maximal existence 
time of the corresponding solution (m, n) to the system (1.4). Then we have

m(t, q(t, x))qx(t, x) = m0(x), (4.19)

and

n(t, q(t, x))qx(t, x) = n0(x). (4.20)

for all (t, x) ∈ [0, T ) ×R.
Moreover, if there exists a C > 0 such that for all (t, x) ∈ [0, T ) ×R,

(
(uxn + vxm) + (un − vm)

)
(t, x) ≥ −C,

then for all t ∈ [0, T ),

||m(t, ·)||L∞ ≤ CeCt ||m0||Hs and ||n(t, ·)||L∞ ≤ CeCt ||n0||Hs . (4.21)

Proof. Differentiating the left-hand side of (4.19)–(4.20) with respect to t and making use of 
(4.17)–(4.18) and the system (1.4), we have
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d

dt
(m(t, q(t, x))qx(t, x))

= (mt (t, q) + mx(t, q)qt (t, x))qx(t, x) + m(t, q)qxt (t, x)

= [mt + (
(uv − uxvx) − (uvx − uxv)

)
mx + (

(uxn + vxm)

+ (un − vm)
)
m](t, q(t, x))qx(t, x)

= 0

and

d

dt
(n(t, q(t, x))qx(t, x))

= (nt (t, q) + nx(t, q)qt (t, x))qx(t, x) + n(t, q)qxt (t, x)

= [nt + (
(uv − uxvx) − (uvx − uxv)

)
nx + (

(uxn + vxm)

+ (un − vm)
)
n](t, q(t, x))qx(t, x)

= 0,

which proves (4.19) and (4.20). By Lemma 4.3, in view of (4.18)–(4.20), the assumption of the 
lemma, and the fact Hs(R) ↪→ L∞(R) as s > 1

2 , we obtain for all t ∈ [0, T ),

||m(t, ·)||L∞ = ||m(t, q(t, ·))||L∞ = ||q−1
x (t, ·)m0(·)||L∞ ≤ CeCt ||m0||Hs

and

||n(t, ·)||L∞ = ||n(t, q(t, ·))||L∞ = ||q−1
x (t, ·)n0(·)||L∞ ≤ CeCt ||n0||Hs ,

which complete the proof of the lemma. �
The following theorem shows the precise blow-up scenario for sufficiently regular solutions 

to the system (1.4).

Theorem 4.2. Let (m0, n0) ∈ Hs(R) × Hs(R) with s > 1
2 and T > 0 be the maximal existence 

time of the corresponding solution (m, n) to the system (1.4). Then the solution (m, n) blows up 
in finite time if and only if

lim inf
t→T

inf
x∈R{((uxn + vxm) + (un − vm)) (t, x)} = −∞.

Proof. Assume that the solution (m, n) blows up in finite time (T < ∞) and there exists a C > 0
such that

(
(uxn + vxm) + (un − vm)

)
(t, x) ≥ −C, ∀ (t, x) ∈ [0, T ) ×R.
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By (4.21), we have

T∫
0

(||m(t)||L∞ + ||n(t)||L∞)2dt ≤ C2T e2CT (||m0||Hs + ||n0||Hs )2 < ∞,

which contradicts to Theorem 4.1.
On the other hand, by (4.1)–(4.4) and the Sobolev embedding theorem, we can see that if

lim inf
t→T

inf
x∈R{((uxn + vxm) + (un − vm)) (t, x)} = −∞,

then the solution (m, n) must blow up in finite time. This completes the proof of the theorem. �
Remark 4.2. If v ≡ u, then Theorem 4.2 covers the corresponding result in [21].

In order to have a new blow-up criterion with respect to the initial data of strong solutions to 
the system (1.4), we directly investigate the transport equation in terms of (uxn + vxm) + (un −
vm) which is the slope of (uv − uxvx) − (uvx − uxv).

Lemma 4.5. Let (m0, n0) ∈ Hs(R) ×Hs(R) with s > 1
2 and T > 0 be the maximal existence time 

of the corresponding solution (m, n) to the system (1.4). Set M = M(t, x) �
(
(uxn + vxm) +

(un − vm)
)
(t, x). Then for all (t, x) ∈ [0, T ) ×R, we have

Mt + (
(uv − uxvx) − (uvx − uxv)

)
Mx

= −M2 − n(1 − ∂2
x )−1((ux + u)M

) − m(1 − ∂2
x )−1((vx − v)M

)
− n∂x(1 − ∂2

x )−1((ux + u)M
) + m∂x(1 − ∂2

x )−1((vx − v)M
)
. (4.22)

Moreover, if we assume that (m0, n0) ∈ L1(R) ×L1(R) and m0(x), n0(x) ≥ 0 for all x ∈R, then

|ux(t, x)| ≤ u(t, x) ≤ H1 =
∫
R

m0(x)dx, (4.23)

|vx(t, x)| ≤ v(t, x) ≤ H2 =
∫
R

n0(x)dx, (4.24)

and

Mt + (
(uv − uxvx) − (uvx − uxv)

)
Mx ≤ −M2 + δ(m + n), (4.25)

for all (t, x) ∈ [0, T ) × R, where δ � 3
2 (H1 + H2)

3 is a positive constant and H1, H2 are two 
conservation laws in (1.3).
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Proof. As per Remark 4.1, we here may assume s ≥ 3 to prove the lemma. Firstly, we have

Mt + (
(uv − uxvx) − (uvx − uxv)

)
Mx

= uxtn + vxtm + utn − vtm + uxnt + vxmt + unt − vmt + (
(uv − uxvx)

− (uvx − uxv)
) × (uxnx + vxmx + uxxn + vxxm + uxn − vxm + unx − vmx).

(4.26)

From the system (1.4), we infer that

(1 − ∂2
x )[ut + (

(uv − uxvx) − (uvx − uxv)
)
ux]

= mt + (1 − ∂2
x )[((uv − uxvx) − (uvx − uxv)

)
ux]

= −(
(uv − uxvx) − (uvx − uxv)

)
mx − Mm + (

(uv − uxvx) − (uvx − uxv)
)
ux

− ∂2
x [((uv − uxvx) − (uvx − uxv)

)
ux]

= −(
(uv − uxvx) − (uvx − uxv)

)
(mx − ux) − Mm

− ∂x[Mux + (
(uv − uxvx) − (uvx − uxv)

)
(u − m)]

= −2uM + Mm − uxMx

= −uM − (uxM)x.

Hence,

ut + (
(uv − uxvx) − (uvx − uxv)

)
ux = −(1 − ∂2

x )−1(uM + (uxM)x
)
. (4.27)

Likewise,

vt + (
(uv − uxvx) − (uvx − uxv)

)
vx = −(1 − ∂2

x )−1(vM + (vxM)x
)
. (4.28)

By virtue of (4.27)–(4.28) and the system (1.4), we have

uxtn + vxtm

= −(
(uv − uxvx) − (uvx − uxv)

)
(uxxn + vxxm) − n∂x(1 − ∂2

x )−1(uM)

− m∂x(1 − ∂2
x )−1(vM) − n(1 − ∂2

x )−1(uxM) − m(1 − ∂2
x )−1(vxM), (4.29)

utn − vtm

= −(
(uv − uxvx) − (uvx − uxv)

)
(uxn − vxm) − n∂x(1 − ∂2

x )−1(uxM)

+ m∂x(1 − ∂2
x )−1(vxM) − n(1 − ∂2

x )−1(uM) + m(1 − ∂2
x )−1(vM), (4.30)

uxnt + vxmt

= −(
(uv − uxvx) − (uvx − uxv)

)
(uxnx + vxmx) − (uxn + vxm)M, (4.31)

and
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unt − vmt

= −(
(uv − uxvx) − (uvx − uxv)

)
(unx − vmx) − (un − vm)M. (4.32)

Applying (4.26) and (4.29)–(4.32), one gets (4.22).
Since m0(x), n0(x) ≥ 0 for all x ∈R, it follows from (4.18)–(4.20) that

m(t, x), n(t, x) ≥ 0, ∀ (t, x) ∈ [0, T ) ×R. (4.33)

Note that

u(t, x) = (1 − ∂2
x )−1m(t, x) = (p ∗ m)(t, x) = 1

2

∫
R

e−|x−y|m(t, y)dy.

Then

u(t, x) = e−x

2

x∫
−∞

eym(t, y)dy + ex

2

∞∫
x

e−ym(t, y)dy

and

ux(t, x) = −e−x

2

x∫
−∞

eym(t, y)dy + ex

2

∞∫
x

e−ym(t, y)dy,

which together with (4.33) yields

0 ≤ u(t, x) + ux(t, x) =
∞∫

x

ex−ym(t, y)dy ≤ H1 =
∫
R

m0(x)dx (4.34)

and

0 ≤ u(t, x) − ux(t, x) =
x∫

−∞
ey−xm(t, y)dy ≤ H1 =

∫
R

m0(x)dx.

Hence, we prove (4.23).
Similarly, in view of v(t, x) = (1 − ∂2

x )−1n(t, x) = (p ∗ n)(t, x), one gets

0 ≤ v(t, x) + vx(t, x) =
∞∫

x

ex−yn(t, y)dy ≤ H2 =
∫
R

n0(x)dx

and
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0 ≤ v(t, x) − vx(t, x) =
x∫

−∞
ey−xn(t, y)dy ≤ H2 =

∫
R

n0(x)dx, (4.35)

which implies (4.24).
Noting that

|∂x(1 − ∂2
x )−1f (x)| =

∣∣∣∣∣∣
1

2

∫
R

sgn(x − y)e−|x−y|f (y)dy

∣∣∣∣∣∣
≤ 1

2

∫
R

e−|x−y||f (y)|dy

= (p ∗ |f |)(x),

and applying (4.23)–(4.24), (4.34)–(4.35), together with the facts u = p ∗ m, v = p ∗ n again, 
one infers

−n(1 − ∂2
x )−1((ux + u)M

) − m(1 − ∂2
x )−1((vx − v)M

)
≤ n

(
p ∗ ((ux + u)(v − vx)m)

) + m
(
p ∗ ((ux + u)(v − vx)n)

)
≤ H1H2

(
n(p ∗ m) + m(p ∗ n)

)
≤ H1H2(H1n + H2m)

≤ H1H2(H1 + H2)(m + n),

and

−n∂x(1 − ∂2
x )−1((ux + u)M

) + m∂x(1 − ∂2
x )−1((vx − v)M

)
≤ n

(
p ∗ |(ux + u)M|) + m

(
p ∗ |(v − vx)M|)

≤ H 2
1 n(p ∗ n) + H1H2n(p ∗ m) + H 2

2 m(p ∗ m) + H1H2m(p ∗ n)

≤ 2H1H2(H1 + H2)(m + n),

which along with (4.22) imply (4.25). Therefore, we prove the lemma. �
With Lemma 4.5 in hand, a new blow-up result with regard to the initial data follows to 

conclude this section.

Theorem 4.3. Suppose that (m0, n0) ∈
(
Hs(R) ∩ L1(R)

) × (
Hs(R) ∩ L1(R)

)
with s > 1

2 and 
T > 0 be the maximal existence time of the corresponding solution (m, n) to the system (1.4). 
Assume that m0(x), n0(x) ≥ 0 for all x ∈ R, and m0(x0), n0(x0) > 0 for some x0 ∈ R. Set 
M(t) � M(t, q(t, x0)) and N(t) � (m + n)(t, q(t, x0)). If

M(0) < −√
2δN(0), (4.36)
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where δ is the positive constant defined in Lemma 4.5, then the solution (m, n) blows up at a time 
T0 ∈ (0, T1] with

T1 � −M(0) + √
M2(0) − 2δN(0)

δN(0)
.

Moreover, when T0 = T1, we have the estimate of the blow-up rate as follows

lim inf
t→T −

0

(
(T0 − t)M(t)

) ≤ −1. (4.37)

Proof. In view of Remark 4.1, we here may assume s ≥ 3 to prove the theorem. By (4.17), (4.25)
and the assumption of the theorem, we have

d

dt
M(t) = d

dt
M(t, q(t, x0))

= (
Mt + (

(uv − uxvx) − (uvx − uxv)
)
Mx

)
(t, q(t, x0))

≤ −M2(t) + δN(t). (4.38)

From the system (1.4) and Eq. (4.17), we get

d

dt
N(t) = d

dt
m(t, q(t, x0)) + d

dt
n(t, q(t, x0))

= −M(t)N(t). (4.39)

Apparently, (4.18)–(4.20) and the assumption imply N(t) > 0 for all t ∈ [0, T ). By (4.38) and 
(4.39), we have

N(t)
d

dt
M(t) − M(t)

d

dt
N(t) ≤ δN2(t),

which gives d
dt

(
M(t)
N(t)

)
≤ δ. Integrating from 0 to t yields

M(t)

N(t)
≤ M(0)

N(0)
+ δt,

or hence

M(t) ≤
(

M(0)

N(0)
+ δt

)
N(t), (4.40)

which along with (4.39) leads to

d

dt

(
1

N(t)

)
≤ M(0)

N(0)
+ δt. (4.41)

Integrating from 0 to t gives
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0 <
1

N(t)
≤ 1

N(0)
+

t∫
0

(
M(0)

N(0)
+ δτ

)
dτ

= δ

2

(
t2 + 2M(0)

δN(0)
t + 2

δN(0)

)

= δ

2
(t − T1)(t − T2), (4.42)

with

0 < T1 < − M(0)

δN(0)
= T1 + T2

2
< T2, (4.43)

and T1, T2 are two different roots of the equation t2 + 2M(0)
δN(0)

t + 2
δN(0)

= 0, which is ensured by 

(4.36). Thanks to (4.42), one can find some T0 ∈ (0, T1] such that

N(t) → +∞, as t → T0.

In view of (4.40) and (4.43), one deduces

inf
x∈R

(
(uxn + vxm) + (un − vm)

)
(t, x) ≤ M(t) → −∞, as t → T0.

So, according to Theorem 4.2, the solution (m, n) blows up at the time T0 ∈ (0, T1].
On the other hand, when T0 = T1, thanks to (4.40) and (4.42)–(4.43), one infers that for all 

0 < t < T0,

(T0 − t)M(t) ≤ (T0 − t)

(
M(0)

N(0)
+ δt

)
N(t)

≤ (T0 − t)

(
M(0)

N(0)
+ δt

)
2

δ(t − T1)(t − T2)

= −2
t − T1+T2

2

t − T2
,

which yields (4.37). Therefore, we complete the proof of the theorem. �
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