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A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions *
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A new method is presented to generate finite dimensional integrable systems. Our starting point is a generalized
Lax matrix instead of usual Lax pair. Then a unisonant r-matrix structure and a set of generalized Hamiltonian
functions are constructed. It can be clearly seen that various constrained integrable flows by nonlinearization
method, such as the c-AKNS, c-MKdV, c-Toda, etc., are derived from the reduction of this structure. Further-

more, some new integrable flows are produced.
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It is well-known that the nonlinearization
technique! is a powerful tool to produce finite di-
mensional integrable systems. With the help of this
method, many new completely integrable systems
were found.2* Each integrable system is generated
through making nonlinearized procedure for a con-
crete spectral problem or Lax pair, and it has its own
individuality. Then a natural question is whether or
not there are a unified structure such that it can con-
tain those individual integrable systems generated by
nonlinearization method. In the present letter, we
give an affirmable answer. We propose a new proce-
dure to generate finite dimensional integrable systems
from a generalized Lax matrix instead of usual Lax
pair. To do so, we construct a unisonant r-matrix
structure and a set of generalized integrable Hamil-
tonian functions through studying the fundamental
Poisson bracket.

It can be clearly seen that various constrained in-
tegrable flows by nonlinearization method, such as the
c-AKNS, ¢-MKdV, c-Toda, etc., are derived from the
reduction of the structure. Moreover, some new in-
tegrable flows are produced from this structure. Let
us first give some necessary notation in this letter:
dpAdg stands for the standard symplectic structure in
Euclidean space R*N = {(p,q)lp = (p1,-.-,pn),q =
(q1,---,an)}, (,-) the standard inner product in R";
in (R2",dp A dq) the Poisson bracket of two Hamilto-
nian functions F, G is defined by

OF G  9F 9G
(6= Sl - 5o0)
OF oG
And Ay,:--, AN are N arbitrarily given distinct con-

stants; A and p are the two different spectral pa-
rameters; A = diag(Ay,---,An), lo = {(q,9), Jo =

(p,q),Ko = {p,p), @
<Apa Q>; ag, a1 = const.

(Ap, p)<Aqa q)a Jp o=

Denote all infinitely times differentiable functions
on real field R by C*°(R).

Consider the following matrix (called Lax matrix)

B(A)
_AQ) ) ’ @)

A
L= ( oy

where

A()‘) =a- 2(-[1, Jl)/\_2 +a_ 1(J0)/\_1 + ap

-|-G,1A+Z p]q] (3)
N qg
B(\) =b_1(Jo, J)A™" +bo(Jo) = Y 5755
i=1 7 (4
N P2-
C()\) —c_1(J0,K0))\ + Co(Jo) Z Y _J)‘ . ( )
7 (5

Now, we make an Assumption (P): {A()\), A(p)},
{AQ), B}, {AX), Cw}, {BO), Bw)} (BOV.
C(1)},{C(A),C(u)} are all expressed as some linear
combinations of A(X), A(u), B(A), B(p), C()\),C(p),
then we have:

Proposition 1:  If the Assumption (P) holds, then
L(X) only contains the following cases:

1. Asa_5 # const, a9 = bg = ¢cg = a3 = 0,
a_y = —Jo, b1 = Iy, c.1 = —Kp, a_; satisfies
the relation I; = (J; + a_2)? + f(a_z), Vf(a—s) €
C>™(R); as a_3 = const # 0, a9 = bp = ¢ =
ap = 0; a_y = const, b_y = Iy + f(Jo), c-1 =
Ko + 9(Jo), and f(Jo), g(Jo) € C=(R) satisfy
the relation f(Jo)g(Jo) = —J& — 2a_1Jp + const, or
a_1=—Jo, b_y = Iy, c.1 = —Kp.
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2. a_2=a_1=b_1=c_1=bo=c0=a1=0,
ag = const.

3. a_2=b_1=a0=b0:co=a1=0,
c-1 = —Ko,a_1 = a_1(Jp),VYa_1(Jp) € C*(R), but
da_l/ng # 0.

4. a3 =a_1=b_1 =c_1=by=a, =0,a9 =
const,cp # 0,Vcy = CO(J()) € COO(R)

5. a3 = c_1 = by = a; =0, a_; = const,
ap = comst,b.y = Iy + f(Jo),co = co(Jp) satisfies
(d/dJo)(Co(Jo) . f(Jo)) = —2a0,Vf(J0) S Coo(R), as
co(Jo) - f(Jo) = const, choose ay = 0.

6. a2 =c_1 =as=byp =cp =a; =0,a_; =
Jo + const,b_y = I.

7. Asa_3 = ap = by = ¢y = a; = 0, there are the
following five subcases:

(7.1) a_y = const,c_qy = ~Kp + f(Jo),b_y =
I + 9(Jo), ¥£(Jo), g(Jo) € C=(R);
(72) a.) = —Jo,b_l = Io,c_l = Ko;

(7.3) a_y = —Jy + const, (d/dJo)(b_1c_;) =
2a_1,\7’b_1 = b_l(Jo),C._l = C_1(J0) S COO(R),
(74) a1y = —Jo + const,b_y, = Iy,Ve_; =

c-1(Jo) € C*(R);
(7.5) a_1 = —Jp + const.,c_; = —Ko,Vb_; =
b_1(Jo) € C*(R).

8. a_s =a_1 = b—l =Cc 1 = 0, ag = const,al =

2 Ba_2 Eda_l Zab_l
p? 841 p dJo r 8Jo
dCQ
22—
dJo 0
S =
2) 80_2 2 ab_l
m—— 'Y — [
I~L2< p$p> 3]1 /l 8[0
2\ 8a_2
\ 0 p(/lp,p) BI,

The proof of Proposition 1 and Theorem 1 can be
seen in Ref. 5.

Through considering the determinant of L()\) and
combining it with Eq. (6), we can easily obtain the
following theorem:.

Theorem 2: Under the assumption (P), the fol-
lowing equalities

{Eiij} :0a {HhE]} 20, {Fm)E]} :0,
i,j=1,2,---,N, l=—4,---,2, m=0,1,2,--,

(8)
hold. Hence, the Hamiltonian systems (H;) and (F,,)
. 6H ;.
(Hl) 4z = E‘) Pz = 3q 3 l - 47 321 (9)
oF,, oF,,

(Fm): qt,, = o Pt =

const,bg # 0,c0 # O, which satisfy the relation
(d/dJo)(boCo) = —2a1,Yby = bo(J()),Co = Co(J()) S
C>(R).

9. a2 = a1 = by = cq =0, ¢, a,
ap = const, by # 0, Vby = bo(Jo) € COO(R)

10. a_2 =b_y =¢g = a; =0, a_; = const,ag =
const,c_1 = —Ko + f(Jo), bo = bo(Jp) satisfies the
relation (d/dJo)(bo(Jo) . f(Jo)) = —2ao,Vf(J0) €
C*(R), as bg(Jo) - f(Jo) = const, choose ag = 0.

Let Li(A) = L(A) ® I, La(p) = I ® L(p), where
I is the 2 x 2 unit matrix, ® is the tensor product of
matrix. In the following, we search for a general 4 x 4
r-matrix structure r15(\, p) such that the fundamental
Poisson bracket:3

{LO) 8 L(w)} = [r12(X, ), Ly (V)] = [r2a (1, A), Lo ()]

(6)
holds, where ry(A\,p) = Prio(A\p)P, P =

(1/2) Z?:o 0; ® 0;, 0; is the standard Pauli matrices.
Theorem 1: Under the Assumption (P),

2
ri2(A, p) = #_—)\P‘F § (M

is an r-matrix structure satisfying Eq. (6), where

2 17/

a_z
—{(A 0
”2( 2,95 i
2 8c_, 2 da_o
dbg
90
0 dJy
_g dc_y aaa_2 gda_l
p 0Jo p2 8Jy  u dJp

are completely integrable in Liouville’s sense. Here,
the expressions E; (j = 1,2,---,N), H (I =
—4,--+,2), and F,, (m = 0,1,2,---.) are the same
as ones in Ref. 5.

Because Lax matrix (2) includes various cases dis-
played in Proposition 1, we call matrix (2) as a gen-
eralized Lax matrix. In the following it can be seen
that various constrained flows are reduced from the
unisonant r-matrix (7).

The following numbers of title coincide with the
ones in Proposition 1, i.e. the corresponding condi-
tions are coincidental. For simplicity, here we only
give a new reduction and several well-known exam-
ples from the unisonant r-matrix (7). Other cases are
similar. In what follows we take the prime “” for
d/dJy.

2.

2
A =——7P
7'12( ’IJ’) “w— A (11)
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This is nothing but the r-matrix of the well-known
constrained AKNS (c—AKNS) system.!

6.
A _— S
T12( ’p’) /‘ _ AP + ’
1 0 0O
0 00O
§= 0100 (12)
0 0 0 1
This is a new r-matrix.
9. 5
A = — S
"'12( ’IJ‘) = AP + )
01 0 0O
Y 0 0 0 O
0 00 O

As by = —Jy, Eq.(13) is reduced to the common r-

matrix of the constrained Toda (c-Toda) system and
the constrained CKdV (¢c-CKdV) system.®
10.

2
= ——7P
"'12(A7IJ‘) M_A +Sy

0 by(Jo) 0 0

1, 2
—f'(Jo) 0 -= 0

_| n p

0 0 0 —b(Jo)
0 0 ~% fd) 0
(14)

As f(Jo) = const, bo(Jy) = 0, Eq.(14) reads the r-
matrix® of the constrained MKdV (c-MKdV) system.

The reduction procedure of the above four cases
and the r-matrices related to other cases in Theorem
1 are detailedly presented in Ref. 5.

Here, we simply give the integrable system aris-
ing from the new r-matrix (12). The corresponding
involutive systems are

Ej =2((p,q) + )] 'pjg;

+(Q7q))‘]_1p?'—rja .7= laaN,
(15)

z (quk - pk‘l‘))2
AV
k=1,ks#j
where ¢ is an arbitrarily given constant. Thus, the fi-
nite dimesional Hamiltonian systems (FL) defined by

FWII:ZJ 1 APE}, m=0,-

Fr=2((p,q) + C)(/\?‘lp, q)
+(0,9)\7 " 'p,p)

- Z ((Alq,

i+j=m-—1

— (A'q,p)(4'p, q)) (16)

(A’p, p)

are completely integrable. Particularly, as m = 2 the
Hamiltonian system (F}):

OF}
4 = 8_p2 = 2cAq — 2(Aq, q)p
+‘(§9<Ap, 9)q + 4(p, q)Aq, (17)

F
e = ——2 = —2cAp + 2(p, p)A
P %4 cAp + 2(p, p) Aq

~4(Ap, q)p — 4(p, q) Ap,

is a new finite dimensional integrable system, which
can be changed as the following spectral problem

| (2c+4v)A 4+ 4u —2w
% = ( 25\ —(2¢+ 4v)A — 4u ) ¢
(18)
with the constraint condition u = (Ap,q),
(paq)) w = <Aq,‘I), s = (.p1p>’ and A = Aja ¢ =
(g;,p;)T, j =1,---, N. Apparently, spectral problem
(18) is a new one and has never been studied before.

As we see as above, r-matrix indeed plays a very
important role in guaranteeing integrability as well as
in unifying each concrete integrable system by nonlin-
earization method. Recently, we found two different
(even a continuous and a discrete) constrained flows
share a common r-matrix, Lax matrix, and even invo-
lutive systems.”® This, more or less, will be helpful to
the classification of finite dimensional integrable sys-
tems. In addition, the above new integrable system
also implies an interesting procedure how to connect
r-matrix with the spectral problem.
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