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Abstract: This paper is devoted to a new integrable two-component Camassa–Holm
system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable
system that admits weak kink and kink–peakon interactional solutions. In addition, the
new system includes both standard (quadratic) and cubic Camassa–Holm equations as
two special cases. In the paper, we first establish the local well-posedness for the Cauchy
problem of the system, and then derive a precise blow-up scenario and a new blow-up
result for strong solutions to the system with both quadratic and cubic nonlinearity.
Furthermore, its peakon and weak kink solutions are discussed as well.

1. Introduction

In the past two decades, a large amount of literature was devoted to the celebrated
Camassa–Holm (CH) equation [3]

mt + umx + 2ux m + bux = 0, m = u − uxx ,

where b is an arbitrary constant, which models the unidirectional propagation of shallow
water waves over a flat bottom. Here u(t, x) stands for the fluid velocity at time t in
the spatial x direction [3,22,41]. The CH equation is also recognized as a model for the
propagation of axially symmetric waves in hyperelastic rods [18]. It has a bi-Hamiltonian
structure and is completely integrable with algebro-geometric solutions on a symplectic
submanifold [3,29,48]. Its solitary waves vanishing at both infinities are peaked solitons
(peakons) [4] when b = 0, and they are orbitally stable [17]. It is also worth pointing out
that the peakons replicate a feature that is characteristic for the waves of great height—
waves of the largest amplitude that are exact traveling wave solutions of the governing
equations for irrotational water waves, cf. [11,53].

The Cauchy problem and initial boundary value problem for the CH equation have
been studied extensively [8,9,19,27]. It has been shown that this equation is locally
well-posed [8,9,19] for initial data u0 ∈ Hs(R), s > 3

2 . Moreover, it has both globally
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strong solutions [7–9] and blow-up solutions at a finite time [7–10]. On the other hand,
it also has globally weak solutions in H1(R) [2,16,57]. In comparison with the KdV
equation, the advantage of the CH equation lies in the fact that the CH equation has
peakons and models wave breaking [4,10] (namely, the wave remains bounded while its
slope becomes unbounded in finite time [54]).

Another important integrable equation admitting peakons is the well-known
Degasperis–Procesi (DP) equation [21]

mt + umx + 3ux m = 0, m = u − uxx ,

which is regarded as another model for nonlinear shallow water dynamics [13,15]. It
was proved in [20] that the DP equation has a bi-Hamiltonian structure and an infinite
number of conservation laws, and admits peakon solutions which are analogous to the
CH peakons. The DP equation was already extended to a completely integrable hierarchy
in a 3 × 3 matrix Lax pair, which possesses involutive representation of solutions under
a Neumann constraint on a symplectic submanifold [51], and furthermore it was proven
to have algebro-geometric solutions for such a 3 × 3 integrable system [40].

The Cauchy problem and initial boundary value problem for the DP equation have
been studied extensively in [6,25–27,43,62,63]. Although the DP equation is very simi-
lar to the CH equation in the aspects of integrability, particularly in the form of equation,
there are some significant differences between these two equations. One of the remark-
able features of the DP equation is that it has not only (periodic) peakon solutions [20,63],
but also (periodic) shock peakons [26,44]. Besides, the CH equation is a re-expression
of geodesic flow on the diffeomorphism group [14], while the DP equation is regarded
as a non-metric Euler equation [23].

The nonlinear terms in both CH and DP equations are quadratic with slightly different
constant coefficients. However, there do exist integrable peakon systems with cubic
nonlinearity, which include the cubic CH equation (also called the FORQ equation):

mt + ((u2 − u2
x )m)x + bux = 0, m = u − uxx (1.1)

with a constant b, and the Novikov equation:

mt + u2mx + 3uux m = 0, m = u − uxx .

Equation (1.1) was proposed independently in [29,46,49]. It was derived from the two-
dimensional Euler equations, and its Lax pair, peakon and cusped soliton (cuspon) solu-
tions have been studied in [49]. Recently, the formation of singularities, wave-breaking
mechanism, and the peakon stability of Eq. (1.1) with b = 0 were investigated in [36].

The Novikov equation was proposed in [45] and its Lax pair, bi-Hamiltonian struc-
ture, peakon solutions, well-posedness, blow-up phenomena and global weak solutions
have been studied extensively in [37,39,45,55]. Very recently, the following integrable
equation with both quadratic and cubic nonlinearity

mt +
1

2
k1((u

2 − u2
x )m)x +

1

2
k2(umx + 2ux m) + bux = 0, (1.2)

was investigated for its explicit weak solutions [50], where m = u − uxx , b, k1, and k2
are three arbitrary constants. Eq. (1.2) was first implied in the work of Fokas [28]. Its
Lax pair, bi-Hamiltonian structure, peakons, weak kinks, kink-peakon interaction, and
classical soliton solutions were studied recently in [50].

A natural idea is to extend such a study to the multi-component systems. One of
the popular systems is the following integrable two-component Camassa–Holm shallow
water system (2CH) [5,12]:
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{
mt + umx + 2ux m + σρρx = 0,

ρt + (uρ)x = 0,

where m = u − uxx and σ = ±1, which becomes CH equation when ρ ≡ 0. The
Cauchy problems of the 2CH system with σ = −1 and with σ = 1 have been studied in
[24] and [12,31,33,35], respectively. Local well-posedness for the 2CH system with the
initial data in Sobolev spaces and in Besov spaces have been established in [12,25,35].
The blow-up phenomena and global existence of strong solutions to the 2CH system in
Sobolev spaces have been investigated in [25,31,35]. The analyticity of solutions to the
Cauchy problem and the initial boundary value problem for the 2CH system have been
studied in [58] and [61], respectively. Recently, the existence of global weak solutions
for the 2CH system with σ = 1 has been proved in [33]. Two other notable systems are
the modified two-component Camassa–Holm system (M2CH) [38]:

{
mt + umx + 2ux m + σρρ̄x = 0,

ρt + (uρ)x = 0,

with m = u −uxx , ρ = (1−∂2
x )(ρ̄ − ρ̄0), σ = ±1, and the two-component Degasperis–

Procesi system (2DP) [47]:
{

mt + umx + 3ux m + bρρx = 0,

ρt + uρx + 2uxρ = 0,

with m = u − uxx and a real constant b. When ρ ≡ 0, both M2CH and 2DP equations
are reduced to CH and DP equations, respectively. The Cauchy problems and initial
boundary value problems for the M2CH and 2DP equations have been studied in many
works, for example [32,34,52,60,61] and [59,61]. It is worth pointing out that the
nonlinear terms in above three two-component systems are all quadratic.

In this paper, we consider the following integrable two-component Camassa–Holm
system with both quadratic and cubic nonlinearity proposed in [50,56]:

{
mt + 1

2 [(uv − uxvx )m]x − 1
2 (uvx − uxv)m + bux = 0,

nt + 1
2 [(uv − uxvx )n]x + 1

2 (uvx − uxv)n + bvx = 0,
(1.3)

where m = u − uxx , n = v − vxx , and b takes an arbitrary value. The system (1.3)
is the first two-component system admitting weak kink solutions. It can be reduced to
the CH equation, the cubic CH equation Eq. (1.1), and the generalized CH equation Eq.
(1.2) as v = 2, v = 2u, and v = k1u + k2, respectively. Integrability of this system, its
bi-Hamiltonian structure, and infinitely many conservation laws were already presented
in [56]. Let us now set up the Cauchy problem for the above system as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mt + 1
2 (uv − uxvx )mx = − 1

2 (ux n + vx m)m + 1
2 (uvx − uxv)m − bux ,

nt + 1
2 (uv − uxvx )nx = − 1

2 (ux n + vx m)n − 1
2 (uvx − uxv)n − bvx ,

m(0, x) = m0(x),

n(0, x) = n0(x).

(1.4)

By using an approach similar to the one in [58], the analytic solutions to the system (1.4)
can readily be proved in both variables, globally in space and locally in time. However,
the goal of this paper is to establish the local well-posedness regime for the Cauchy
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problem in Besov spaces, present the precise blow-up scenario and a new blow-up result
for strong solutions to the system , and provide the peakon and weak kink solutions.

Regarding the locally well-posed problem, we first adopt the classical Kato semi-
group theory to obtain the local well-posedness for the system (1.4) with initial data
(m0, n0) belonging in Sobolev space Hs(R) × Hs(R) as s ≥ 1. Subsequently, we take
advantage of the transport equation theory, Littlewood–Paley’s decomposition and some
fine estimates of Besov spaces to establish the local well-posedness for the system (1.4)
in Besov spaces (see Theorem 3.2 below in Sect. 3), which particularly implies the sys-
tem is locally well-posed with initial data (m0, n0) ∈ Hs(R) × Hs(R) for 1

2 < s �= 3
2 .

This almost improves the corresponding result by using Kato’s semigroup approach.
In order to analyze the blow-up phenomena, here we may make good use of the

fine structure of the system (1.4). It is not difficult for us to verify that the system (1.4)
possesses the following two conservation laws:

H1 = 1

2

∫
R

(uv + uxvx )dx = 1

2

∫
R

undx = 1

2

∫
R

vmdx,

H2 = 1

4

∫
R

(
(u2vx + u2

xvx − 2uuxv)n + 2b(uvx − uxv)
)

dx .

In fact, as mentioned before, this system is completely integrable and has infinitely many
conservation laws [56]. But, unfortunately, it seems that there is not a good way to control
the quantities ||u(t, ·)||L∞ and ||v(t, ·)||L∞ directly, while it is very important to bound
them in studying the blow-up phenomena of the system (1.4). This difficulty may be
overcome by exploiting the characteristic ODE related to the system (1.4) to construct
some invariant properties of the solutions and sufficiently utilizing the structure of the
system itself, which we need to deal with for the two cross-terms 1

2 (uvx − uxv)m and
− 1

2 (uvx −uxv)n in the system (see Lemma 4.2 below). For the special case of Eq. (1.1)
as b = 0, with the conserved quantity

∫
R

umdx = ||u||2
H1(R)

in hand, one can directly
control ||u(t, ·)||L∞ by using the Sobolev’s embedding theorem, that is,

||u(t, ·)||L∞(R) ≤ C ||u(t, ·)||H1(R) = C ||u0||H1(R), ∀ t ∈ [0, T ).

In that way, the blow-up phenomena of Eq. (1.1) with b = 0 has been studied in [36].
On the other hand, in view of the uselessness of the conservation laws of the system

(1.4) again (mainly because the regularity is not high enough), we directly investigate
the transport equation in terms of 1

2 (ux n + vx m), which is the slope of 1
2 (uv − uxvx )

(see Lemma 4.3 below), to derive a new blow-up result with respect to initial data (see
Theorem 4.3 below). Overall, we do not use any conservation laws rather than the almost
symmetrical structure of the system (1.4) in the whole paper.

The rest of our paper is organized as follows. In Sect. 2, we recall the Littlewood–
Paley analysis and the transport equation theory. In Sect. 3, we establish the local well-
posedness of the system (1.4). In Sect. 4, we provide the precise blow-up scenario and
a new blow-up result of strong solutions to the system (1.4). Section 5 is devoted to
discussing peakon and weak kink solutions.

2. Preliminaries

In this section, we recall some facts on the Littlewood–Paley analysis and transport
equation theory, which are frequently used in the following sections.
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To begin with, we introduce some notations. Let s ∈ R, 1 ≤ p, r ≤ ∞. The
nonhomogeneous Besov space Bs

p,r (R
n) (Bs

p,r for short) is defined by

Bs
p,r (R

n) � { f ∈ S ′(Rn) : || f ||Bs
p,r

� ||(2qs ||�q f ||L p(Rn))q≥−1||lr < ∞},
where �q is the Littlewood–Paley decomposition operator [1] . If s = ∞, then B∞

p,r �⋂
s∈R

Bs
p,r . In addition, define

Es
p,r (T ) � C([0, T ]; Bs

p,r ) ∩ C1([0, T ]; Bs−1
p,r ), if r < ∞,

Es
p,∞(T ) � L∞(0, T ; Bs

p,∞) ∩ Lip (0, T ; Bs−1
p,∞)

for some T > 0.

Proposition 2.1. [1] Let m ∈ R and f be an Sm-multiplier. That is, f : R
n → R is

smooth and satisfies that for any α ∈ N
n, there is a constant Cα > 0 such that

|∂α f (ξ)| ≤ Cα(1 + |ξ |)m−|α|, ∀ ξ ∈ R
n .

Let f (D) � F−1 f F ∈ Op(Sm). Then the operator f (D) is continuous from Bs
p,r to

Bs−m
p,r .

For some other basic properties of Besov spaces, one may check [1] for more details.
Now, we recall the following 1-D Morse type estimate.

Proposition 2.2. [19,35] (i) For s1 ≤ 1
p < s2 (s2 ≥ 1

p if r = 1) and s1 + s2 > 0,

|| f g||B
s1
p,r (R)

≤ C || f ||B
s1
p,r (R)

||g||B
s2
p,r (R)

. (2.1)

(ii) For s > 0,

|| f g||Bs
p,r (R) ≤ C(|| f ||Bs

p,r (R)||g||L∞(R) + ||g||Bs
p,r (R)|| f ||L∞(R)). (2.2)

(iii) In Sobolev spaces Hs(R) = Bs
2,2(R), for s > 0,

|| f ∂x g||Hs(R) ≤ C(|| f ||Hs+1(R)||g||L∞(R) + || f ||L∞(R)||∂x g||Hs(R)), (2.3)

where C is a positive constant independent of f and g.

Finally, let us state some useful results in the transport equation theory, which are
crucial to the proofs of our main theorems.

Lemma 2.1. [1,19] (A priori estimates in Besov spaces) Let 1 ≤ p, r ≤ ∞ and
s > − min( 1

p , 1 − 1
p ). Assume that f0 ∈ Bs

p,r , F ∈ L1(0, T ; Bs
p,r ), and ∂xv be-

longs to L1(0, T ; Bs−1
p,r ) if s > 1 + 1

p or to L1(0, T ; B
1
p
p,r ∩ L∞) otherwise. If f ∈

L∞(0, T ; Bs
p,r )

⋂
C([0, T ];S ′) solves the following 1-D transport equation:

(T ) :
{

∂t f + v ∂x f = F,

f |t=0 = f0,

then there exists a constant C depending only on s, p and r, and such that the following
statements hold:
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(1) If r = 1 or s �= 1 + 1
p , then

|| f (t)||Bs
p,r

≤ || f0||Bs
p,r

+
∫ t

0
||F(τ )||Bs

p,r
dτ + C

∫ t

0
V ′(τ )|| f (τ )||Bs

p,r
dτ

with V (t) = ∫ t
0 ||∂xv(τ)||

B
1
p

p,r ∩L∞
dτ if s < 1 + 1

p , and V (t) = ∫ t
0 ||∂xv(τ)||Bs−1

p,r
dτ

else.
(2) If r < ∞, then f ∈ C([0, T ]; Bs

p,r ); and if r = ∞, then f ∈ C([0, T ]; Bs′
p,1) for

all s′ < s.

Lemma 2.2. [35] (A priori estimate in Sobolev spaces) Let 0 < σ < 1. Assume that
f0 ∈ Hσ , F ∈ L1(0, T ; Hσ ), and v, ∂xv ∈ L1(0, T ; L∞). If f ∈ L∞(0, T ; Hσ )

⋂
C([0, T ];S ′) solves (T ), then f ∈ C([0, T ]; Hσ ), and there exists a constant C de-
pending only on σ such that

|| f (t)||Hσ ≤ || f0||Hσ + C
∫ t

0
||F(τ )||Hσ dτ + C

∫ t

0
V ′(τ )|| f (τ )||Hσ dτ

with V (t) = ∫ t
0 (||v(τ)||L∞ + ||∂xv(τ)||L∞)dτ .

Lemma 2.3. [1] (Existence and uniqueness) Let p, r, s, f0 and F be as in the statement
of Lemma 2.1. Assume that v ∈ Lρ(0, T ; B−M∞,∞) for some ρ > 1 and M > 0, and ∂xv ∈
L1(0, T ; Bs−1

p,r ) if s > 1+ 1
p or s = 1+ 1

p and r = 1, and ∂xv ∈ L1(0, T ; B
1
p
p,∞ ∩ L∞) if

s < 1+ 1
p . Then (T) has a unique solution f ∈ L∞(0, T ; Bs

p,r )
⋂ ( ⋂

s′<s
C([0, T ]; Bs′

p,1)
)

and the inequalities of Lemma 2.1 hold true. Moreover, if r <∞, then f ∈C([0, T ]; Bs
p,r ).

3. Local Well-Posedness

In this section, we study the local well-posedness for the system (1.4). To do so, we
apply the classical Kato’s semigroup theory [42] to set up the local well-posedness of
the system (1.4) in Sobolev spaces. More precisely, we have

Theorem 3.1. Suppose that (m0, n0) ∈ Hs(R) × Hs(R) with s ≥ 1. There exists a
maximal existence time T = T (||m0||Hs (R), ||n0||Hs (R)) > 0, and a unique solution
(m, n) to the system (1.4) such that

(m, n) ∈ C([0, T ); Hs(R) × Hs(R)) ∩ C1([0, T ); Hs−1(R) × Hs−1(R)).

Moreover, the solution depends continuously on the initial data, that is, the mapping
(m0, n0) �→ (m, n) :

Hs(R)×Hs(R)→C([0, T ); Hs(R)×Hs(R)) ∩ C1([0, T ); Hs−1(R)×Hs−1(R))

is continuous.

Proof. By going along the similar line of the proof in [24], one can readily prove the
theorem. For the sake of simplicity, we omit the details here. 
�

Let us now focus on the case in the nonhomogeneous Besov spaces. Uniqueness and
continuity with respect to the initial data in some sense can be obtained by the following
priori estimates.
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Lemma 3.1. Let 1 ≤ p, r ≤ ∞ and s > max(1 − 1
p , 1

p , 1
2 ). Suppose that we are given

(m(i), n(i)) ∈ L∞(0, T ; Bs
p,r × Bs

p,r ) ∩ C([0, T ];S ′ × S ′) (i = 1, 2) two solutions

of the system (1.4) with the initial data (m(i)
0 , n(i)

0 ) ∈ Bs
p,r × Bs

p,r (i = 1, 2) and let

u(12) � u(2) − u(1), v(12) � v(2) − v(1), m(12) � m(2) − m(1), and n(12) � n(2) − n(1).
Then for all t ∈ [0, T ], we have

(1) if s > max(1 − 1
p , 1

p , 1
2 ), but s �= 2 + 1

p , then

||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

≤ (||m(12)
0 ||Bs−1

p,r
+ ||n(12)

0 ||Bs−1
p,r

)

× e
C

∫ t
0 (||m(1)(τ )||Bs

p,r
+||m(2)(τ )||Bs

p,r
+||n(1)(τ )||Bs

p,r
+||n(2)(τ )||Bs

p,r
+1)2dτ

� L(s − 1; t); (3.1)

(2) if s = 2 + 1
p , then

||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

≤ C Lθ (s − 1; t)((||m(1)(t)||Bs
p,r

+ ||m(2)(t)||Bs
p,r

)1−θ

+(||n(1)(t)||Bs
p,r

+ ||n(2)(t)||Bs
p,r

)1−θ ),

where θ ∈ (0, 1).

Proof. Apparently, (m(12), n(12)) ∈ L∞(0, T ; Bs
p,r × Bs

p,r )∩ C([0, T ];S ′ ×S ′) solves
the following Cauchy problem of the transport equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t m(12) + 1
2 (u(1)v(1) − u(1)

x v
(1)
x )∂x m(12) = F(t, x),

∂t n(12) + 1
2 (u(1)v(1) − u(1)

x v
(1)
x )∂x n(12) = G(t, x),

m(12)|t=0 = m(12)
0 � m(2)

0 − m(1)
0 ,

n(12)|t=0 = n(12)
0 � n(2)

0 − n(1)
0 ,

(3.2)

where F(t, x) � 1
2

(
(u(1)−m(1))v

(1)
x −(v(1)+n(1))u(1)

x −v
(2)
x m(2)

)
m(12)− 1

2 u(2)
x m(2)n(12)+

1
2

(
v

(1)
x m(2)

x − (v(1) + n(1))m(2) − 2b
)
u(12)

x + 1
2

(
u(2)

x m(2)
x − (m(1) − u(2))m(2)

)
v

(12)
x +

1
2

(
v

(1)
x m(2) − v(1)m(2)

x
)
u(12) − 1

2 (u(2)m(2))xv
(12), and

G(t, x) � 1
2

(
(v(1) − n(1))u(1)

x − (u(1) + m(1))v
(1)
x − u(2)

x n(2)
)
n(12) − 1

2v
(2)
x n(2)m(12) +

1
2

(
u(1)

x n(2)
x −(u(1)+m(1))n(2)−2b

)
v

(12)
x + 1

2

(
v

(2)
x n(2)

x −(n(1)−v(2))n(2)
)
u(12)

x + 1
2

(
u(1)

x n(2)−
u(1)n(2)

x
)
v(12) − 1

2 (v(2)n(2))x u(12).
Here, we make a Claim: For all s > max( 1

p , 1
2 ) and t ∈ [0, T ], we have

||F(t)||Bs−1
p,r

, ||G(t)||Bs−1
p,r

≤ C(||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

)

×(||m(1)(t)||Bs
p,r

+ ||m(2)(t)||Bs
p,r

+ ||n(1)(t)||Bs
p,r

+ ||n(2)(t)||Bs
p,r

+ 1)2, (3.3)

where C = C(s, p, r, b) is a positive constant.
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Indeed, for s > 1 + 1
p , Bs−1

p,r is an algebra, we then have

||(u(1) − m(1))v(1)
x m(12)||Bs−1

p,r
≤ (||u(1)||Bs−1

p,r
+ ||m(1)||Bs−1

p,r
)||v(1)

x ||Bs−1
p,r

||m(12)||Bs−1
p,r

.

According to Proposition 2.1 and noticing (1 − ∂2
x )−1 ∈ Op(S−2), we obtain

||u(i)||Bs+2
p,r

≈ ||m(i)||Bs
p,r

and ||v(i)||Bs+2
p,r

≈ ||n(i)||Bs
p,r

, i = 1, 2, 12, ∀s ∈ R.

(3.4)

Therefore

||(u(1) − m(1))v(1)
x m(12)||Bs−1

p,r
≤ C ||m(1)||Bs

p,r
||n(1)||Bs

p,r
||m(12)||Bs−1

p,r
.

Similarly, we are able to get the following estimates:

||(v(1) + n(1))u(1)
x m(12)||Bs−1

p,r
+ ||v(2)

x m(2)m(12)||Bs−1
p,r

≤ C(||m(1)||Bs
p,r

||n(1)||Bs
p,r

+ ||m(2)||Bs
p,r

||n(2)||Bs
p,r

)||m(12)||Bs−1
p,r

,

||u(2)
x m(2)n(12)||Bs−1

p,r
+ ||(u(2)m(2))xv

(12)||Bs−1
p,r

≤ C ||m(2)||2Bs
p,r

||n(12)||Bs−1
p,r

,

||(v(1)
x m(2)

x − (v(1) + n(1))m(2) − 2b
)
u(12)

x ||Bs−1
p,r

+ ||(v(1)
x m(2) − v(1)m(2)

x

)
u(12)||Bs−1

p,r

≤ C(||m(2)||Bs
p,r

||n(1)||Bs
p,r

+ 1)||m(12)||Bs−1
p,r

,

and

||(u(2)
x m(2)

x − (m(1) − u(2))m(2)
)
v(12)

x ||Bs−1
p,r

≤ C(||m(1)||Bs
p,r

+ ||m(2)||Bs
p,r

)||m(2)||Bs
p,r

||n(12)||Bs−1
p,r

.

So, if s > 1 + 1
p , we have

||F(t)||Bs−1
p,r

≤ C(||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

)

×(||m(1)(t)||Bs
p,r

+ ||m(2)(t)||Bs
p,r

+ ||n(1)(t)||Bs
p,r

+ ||n(2)(t)||Bs
p,r

+ 1)2.

||G(t)||Bs−1
p,r

(s > 1 + 1
p ) can be dealt with likewise.

On the other hand, if max( 1
p , 1

2 ) < s ≤ 1 + 1
p , Bs

p,r is an algebra. In light of (2.1)
and (3.4), one may infer the following results:

||((u(1) − m(1))v(1)
x − (v(1) + n(1))u(1)

x − v(2)
x m(2)

)
m(12)||Bs−1

p,r

≤ C(||(u(1) − m(1))v(1)
x ||Bs

p,r
+ ||(v(1) + n(1))u(1)

x ||Bs
p,r

+ ||v(2)
x m(2)||Bs

p,r
)||m(12)||Bs−1

p,r

≤ C(||m(1)||Bs
p,r

||n(1)||Bs
p,r

+ ||m(2)||Bs
p,r

||n(2)||Bs
p,r

)||m(12)||Bs−1
p,r

,

||u(2)
x m(2)n(12)||Bs−1

p,r
≤ C ||u(2)

x m(2)||Bs
p,r

||n(12)||Bs−1
p,r

≤ C ||m(2)||2Bs
p,r

||n(12)||Bs−1
p,r

,

||(v(1)
x m(2)

x − (v(1) + n(1))m(2) − 2b
)
u(12)

x ||Bs−1
p,r

≤ C ||v(1)
x u(12)

x ||Bs
p,r

||m(2)
x ||Bs−1

p,r
+ C(||(v(1) + n(1))m(2)||Bs

p,r
+ |b|)||u(12)

x ||Bs−1
p,r
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≤ C(||m(2)||Bs
p,r

||n(1)||Bs
p,r

+ 1)||u(12)||Bs+1
p,r

≤ C(||m(2)||Bs
p,r

||n(1)||Bs
p,r

+ 1)||m(12)||Bs−1
p,r

,

||(u(2)
x m(2)

x − (m(1) − u(2))m(2)
)
v(12)

x ||Bs−1
p,r

≤ C(||u(2)
x v(12)

x ||Bs
p,r

||m(2)
x ||Bs−1

p,r
+ ||(m(1) − u(2))m(2)||Bs

p,r
||v(12)

x ||Bs−1
p,r

)

≤ C(||m(1)||Bs
p,r

+ ||m(2)||Bs
p,r

)||m(2)||Bs
p,r

||v(12)||Bs+1
p,r

≤ C(||m(1)||Bs
p,r

+ ||m(2)||Bs
p,r

)||m(2)||Bs
p,r

||n(12)||Bs−1
p,r

,

||(v(1)
x m(2) − v(1)m(2)

x

)
u(12)||Bs−1

p,r

≤ C(||v(1)
x m(2)||Bs

p,r
||u(12)||Bs−1

p,r
+ ||v(1)u(12)||Bs

p,r
||m(2)

x ||Bs−1
p,r

)

≤ C ||m(2)||Bs
p,r

||n(1)||Bs
p,r

||m(12)||Bs−1
p,r

,

and

||(u(2)m(2))xv
(12)||Bs−1

p,r

≤ C(||u(2)
x m(2)||Bs

p,r
||v(12)||Bs−1

p,r
+ ||u(2)v(12)||Bs

p,r
||m(2)

x ||Bs−1
p,r

)

≤ C ||m(2)||2Bs
p,r

||n(12)||Bs−1
p,r

.

Thus, we obtain

||F(t)||Bs−1
p,r

≤ C(||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

)

×(||m(1)(t)||Bs
p,r

+ ||m(2)(t)||Bs
p,r

+ ||n(1)(t)||Bs
p,r

+ ||n(2)(t)||Bs
p,r

+ 1)2

provided that max( 1
p , 1

2 ) < s ≤ 1 + 1
p . We can also treat ||G(t)||Bs−1

p,r
for max( 1

p , 1
2 ) <

s ≤ 1 + 1
p in a similar way. Therefore, our Claim (3.3) is guaranteed.

By Lemma 2.1 (1) and the following fact

V (t) � ||∂x (u
(1)v(1) − u(1)

x v(1)
x )||

B
1
p

p,r ∩L∞
+ ||∂x (u

(1)v(1) − u(1)
x v(1)

x )||Bs−2
p,r

≤ C ||∂x (u
(1)v(1) − u(1)

x v(1)
x )||Bs

p,r

≤ C ||u(1)||Bs+2
p,r

||v(1)||Bs+2
p,r

≤ C ||m(1)||Bs
p,r

||n(1)||Bs
p,r

for s > max(1 − 1
p , 1

p , 1
2 ), but s �= 2 + 1

p , we have

||m(12)(t)||Bs−1
p,r

≤ ||m(12)
0 ||Bs−1

p,r
+

∫ t

0
||F(τ )||Bs−1

p,r
dτ + C

∫ t

0
V (τ )||m(12)(τ )||Bs−1

p,r
dτ

and

||n(12)(t)||Bs−1
p,r

≤ ||n(12)
0 ||Bs−1

p,r
+

∫ t

0
||G(τ )||Bs−1

p,r
dτ + C

∫ t

0
V (τ )||n(12)(τ )||Bs−1

p,r
dτ
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which together with (3.3) lead to

||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

≤ ||m(12)
0 ||Bs−1

p,r
+ ||n(12)

0 ||Bs−1
p,r

+ C
∫ t

0
(||m(12)(τ )||Bs−1

p,r
+ ||n(12)(τ )||s−1

p,r
)

×(||m(1)(τ )||Bs
p,r

+ ||m(2)(τ )||Bs
p,r

+ ||n(1)(τ )||Bs
p,r

+ ||n(2)(τ )||Bs
p,r

+ 1)2dτ.

Taking advantage of Gronwall’s inequality gives rise to (3.1).
For the critical case (2) s = 2 + 1

p , here we use the interpolation method to cope

with it. Let us choose s1 ∈ (max(1 − 1
p , 1

p , 1
2 ) − 1, s − 1), s2 ∈ (s − 1, s) and θ =

s2−(s−1)
s2−s1

∈ (0, 1), then s − 1 = θs1 + (1 − θ)s2. As per the interpolation inequality and
the consequence of case (1), we have

||m(12)(t)||Bs−1
p,r

+ ||n(12)(t)||Bs−1
p,r

≤ ||m(12)(t)||θ
B

s1
p,r

||m(12)(t)||1−θ

B
s2
p,r

+ ||n(12)(t)(t)||θ
B

s1
p,r

||n(12)(t)(t)||1−θ

B
s2
p,r

≤ C Lθ (s1; t)((||m(1)(t)||B
s2
p,r

+ ||m(2)(t)||B
s2
p,r

)1−θ

+(||n(1)(t)||B
s2
p,r

+ ||n(2)(t)||B
s2
p,r

)1−θ )

≤ C Lθ (s − 1; t)((||m(1)(t)||Bs
p,r

+ ||m(2)(t)||Bs
p,r

)1−θ

+(||n(1)(t)||Bs
p,r

+ ||n(2)(t)||Bs
p,r

)1−θ )

which completes the proof of Lemma 3.1. 
�
Next we construct the smooth approximation of solutions to the system (1.4).

Lemma 3.2. Let p and r be as in the statement of Lemma 3.1. Assume that s > max(1−
1
p , 1

p , 1
2 ) and s �= 1 + 1

p , (m0, n0) ∈ Bs
p,r × Bs

p,r and (m0, n0) = (0, 0). Then (1) there

exists a sequence of smooth functions (mk, nk)k∈N belonging to C(R+; B∞
p,r × B∞

p,r ) and
solving the following linear transport equations

(Tk) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t mk+1 + 1
2 (ukvk − uk

xv
k
x )∂x mk+1 = Rk

1(t, x),

∂t nk+1 + 1
2 (ukvk − uk

xv
k
x )∂x nk+1 = Rk

2(t, x),

mk+1|t=0 � mk+1
0 (x) = Sk+1m0,

nk+1|t=0 � nk+1
0 (x) = Sk+1n0,

where Rk
1(t, x) �−1

2

(
(ukvk−uk

xv
k
x )x−(ukvk

x−uk
xv

k)
)
mk−buk

x , Rk
2(t, x) � − 1

2

(
(ukvk−

uk
xv

k
x )x + (ukvk

x − uk
xv

k)
)
nk − bvk

x , and Sk+1 �
∑k

p=−1�p is the low frequency cut-off
operator.

(2) there exists T > 0 such that the solution (mk, nk)k∈N is uniformly bounded
in Es

p,r (T ) × Es
p,r (T ) and a Cauchy sequence in C([0, T ]; Bs−1

p,r × Bs−1
p,r ) so that it

converges to some limit (m, n) ∈ C([0, T ]; Bs−1
p,r × Bs−1

p,r ).
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Proof. Since all the data Sk+1m0, Sk+1n0 ∈ B∞
p,r , it follows from Lemma 2.3 and by

induction with respect to the index k that (1) holds.
To prove (2), analogizing the proof of Lemma 3.1 (1), for s > max(1 − 1

p , 1
p , 1

2 ) and

s �= 1 + 1
p , we obtain

ak+1(t)

≤ CeCU k (t)
(

A +
∫ t

0
e−CU k (τ )(||Rk

1(τ )||Bs
p,r

+ ||Rk
2(τ )||Bs

p,r
)dτ

)
, (3.5)

where ak(t) � ||mk(t)||Bs
p,r

+ ||nk(t)||Bs
p,r

, A � ||m0||Bs
p,r

+ ||n0||Bs
p,r

and U k(t) �∫ t
0 ||mk(τ )||Bs

p,r
||nk(τ )||Bs

p,r
dτ . Since Bs

p,r is an algebra, by (3.4), one can have

||Rk
1(t)||Bs

p,r
+ ||Rk

2(t)||Bs
p,r

≤ C(||mk(t)||Bs
p,r

+ ||nk(t)||Bs
p,r

)(1 + ||mk(t)||Bs
p,r

||nk(t)||Bs
p,r

)

≤ C(ak(t) + a3
k (t)).

If ak(t) < 1, then by (3.5), ak+1(t) ≤ C(A + t), which implies that (mk, nk)k∈N is
uniformly bounded in C([0, T ]; Bs

p,r × Bs
p,r ). If ak(t) ≥ 1, from (3.5) we have

ak+1(t) ≤ CeCU k (t)
(

A +
∫ t

0
e−CU k (τ )a3

k (τ )dτ

)
. (3.6)

Choose T satisfying 0 < T < 1
4C3 A2 and suppose

ak(t) ≤ C A√
1 − 4C3 A2t

, ∀t ∈ [0, T ]. (3.7)

Due to eC(U k (t)−U k(τ )) ≤ 4

√
1 − 4C3 A2τ

1 − 4C3 A2t
, substituting (3.7) into (3.6) yields

ak+1(t) ≤ C A
4
√

1 − 4C3 A2t
+

C
4
√

1 − 4C3 A2t

∫ t

0

C3 A3

(1 − 4C3 A2τ)
5
4

dτ

= C A
4
√

1 − 4C3 A2t
+

C
4
√

1 − 4C3 A2t

(
A

4
√

1 − 4C3 A2t
− A

)

≤ C A√
1 − 4C3 A2t

,

which implies that

(mk, nk)k∈N is uniformly bounded in C([0, T ]; Bs
p,r × Bs

p,r ).

Using the equations (Tk) and the similar argument in the proof of Lemma 3.1 (1), one
can easily prove that

(∂t m
k+1, ∂t m

k+1)k∈N is uniformly bounded in C([0, T ]; Bs−1
p,r × Bs−1

p,r ).
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Hence,

(mk, nk)k∈N is uniformly bounded in Es
p,r (T ) × Es

p,r (T ).

Now it suffices to show that (mk, nk)k∈N is a Cauchy sequence in C([0, T ]; Bs−1
p,r )×

C([0, T ]; Bs−1
p,r ). Actually, for all k, l ∈ N, from (Tk) we have

∂t (m
k+l+1 − mk+1) +

1

2
(uk+lvk+l − uk+l

x vk+l
x )∂x (m

k+l+1 − mk+1)

= −1

2

(
(uk+lvk+l − uk+l

x vk+l
x )x − (uk+lvk+l

x − uk+l
x vk+l)

)
(mk+l − mk)

−1

2

(
(uk+lvk+l − ukvk)x − (uk+l

x vk+l
x − uk

xv
k
x )x − (uk+lvk+l

x − ukvk
x )

+(uk+l
x vk+l − uk

xv
k)

)
mk − 1

2

(
(uk+lvk+l − ukvk) − (uk+l

x vk+l
x − uk

xv
k
x )

)
mk+1

x

−b(uk+l
x − uk

x )

and

∂t (n
k+l+1 − nk+1) +

1

2
(uk+lvk+l − uk+l

x vk+l
x )∂x (n

k+l+1 − nk+1)

= −1

2

(
(uk+lvk+l − uk+l

x vk+l
x )x + (uk+lvk+l

x − uk+l
x vk+l)

)
(nk+l − nk)

−1

2

(
(uk+lvk+l − ukvk)x − (uk+l

x vk+l
x − uk

xv
k
x )x − (uk+l

x vk+l − uk
xv

k)

+(uk+lvk+l
x − ukvk

x )
)
nk − 1

2

(
(uk+lvk+l − ukvk) − (uk+l

x vk+l
x − uk

xv
k
x )

)
nk+1

x

−b(vk+l
x − vk

x ).

Similar to the proof of Lemma 3.1 (1), for s > max(1 − 1
p , 1

p , 1
2 ) and s �= 1 + 1

p , 2 + 1
p ,

we have

bl
k+1(t) ≤ CeCU k+l (t)

(
bl

k+1(0) +
∫ t

0
e−CU k+l (τ )dl

k(τ )bl
k(τ )dτ

)
,

where bl
k(t) � ||(mk+l−mk)(t)||Bs−1

p,r
+||(nk+l−nk)(t)||Bs−1

p,r
,U k+l(t) �

∫ t
0 ||mk+l(τ )||Bs

p,r

||mk+l(τ )||Bs
p,r

dτ , and dl
k(t) � (||mk(t)||Bs

p,r
+ ||mk+1(t)||Bs

p,r
+ ||mk+l(t)||Bs

p,r

+ ||nk(t)||Bs
p,r

+ ||nk+1(t)||Bs
p,r

+ ||nk+l(t)||Bs
p,r

)2 + 1.
Note that

||
k+l∑

q=k+1

�qm0||Bs−1
p,r

=
⎛
⎝ ∑

j≥−1

2 j (s−1)r ||� j (

k+l∑
q=k+1

�qm0)||rL p

⎞
⎠

1
r

≤ C

⎛
⎝k+l+1∑

j=k

2− jr 2 jsr ||� j m0||rL p

⎞
⎠

1
r

≤ C2−k ||m0||Bs
p,r

.
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Likewise,

||
k+l∑

q=k+1

�qn0||Bs−1
p,r

≤ C2−k ||n0||Bs
p,r

.

Therefore, we have

bl
k+1(0) ≤ C2−k(||m0||Bs

p,r
+ ||n0||Bs

p,r
).

According to the fact that (mk, nk)k∈N is uniformly bounded in Es
p,r (T ) × Es

p,r (T ),
there is a positive constant CT independent of k, l such that

bl
k+1(t) ≤ CT

(
2−k +

∫ t

0
bl

k(τ )dτ

)
, ∀t ∈ [0, T ].

Finally by induction with respect to the index k, we arrive at

bl
k+1(t) ≤ CT

⎛
⎝2−k

k∑
j=0

(2T CT ) j

j ! + Ck+1
T

∫ t

0

(t − τ)k

k! dτ

⎞
⎠

≤
⎛
⎝CT

k∑
j=0

(2T CT ) j

j !

⎞
⎠ 2−k + CT

(T CT )k+1

(k + 1)! ,

which implies the desired result as k → +∞.
On the other hand, for the critical point 2 + 1

p , we can apply the interpolation method

which has been used in the proof of Lemma 3.1 to show that (mk, nk)k∈N is also a
Cauchy sequence in C([0, T ]; Bs−1

p,r × Bs−1
p,r ) for this critical case. Therefore, we have

completed the proof of Lemma 3.2. 
�
Now, it is our turn to prove the main theorem of this section.

Theorem 3.2. Assume that 1 ≤ p, r ≤ ∞ and s > max(1 − 1
p , 1

p , 1
2 ) but s �= 1 + 1

p .
Let (m0, n0) ∈ Bs

p,r × Bs
p,r and (m, n) be the limit of the existing Cauchy sequence in

Lemma 3.2 (2). Then there exists a time T > 0 such that (m, n) ∈ Es
p,r (T )× Es

p,r (T ) is
the unique solution to the system (1.4), and the mapping (m0, n0) �→ (m, n) is continuous
from Bs

p,r × Bs
p,r into

C([0, T ]; Bs′
p,r × Bs′

p,r ) ∩ C1([0, T ]; Bs′−1
p,r × Bs′−1

p,r )

for all s′ < s if r = ∞, and s′ = s if 1 ≤ r < ∞.

Proof. We first claim that (m, n) ∈ Es
p,r (T ) × Es

p,r (T ) solves the system (1.4).
In fact, according to Lemma 3.2 (2) and the Fatou lemma, one can have

(m, n) ∈ L∞([0, T ]; Bs
p,r × Bs

p,r ).

For all s′ < s, utilizing Lemma 3.2 (2) together with an interpolation argument yields

(mk, nk) → (m, n), as n → ∞, in C([0, T ]; Bs′
p,r × Bs′

p,r ).
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Taking limit in (Tk), we can see that (m, n) solves the system (1.4) in the sense of
C([0, T ]; Bs′−1

p,r × Bs′−1
p,r ) for all s′ < s. By the system (1.4), adopting a similar proof to

(3.4) together with Lemma 2.1 (2) and Lemma 2.3 leads to (m, n) ∈ Es
p,r (T )× Es

p,r (T ).

On the other hand, the continuity with respect to the initial data in

C([0, T ]; Bs′
p,r × Bs′

p,r ) ∩ C1([0, T ]; Bs′−1
p,r × Bs′−1

p,r ) (∀ s′ < s)

can be shown by Lemma 3.1 and a simple interpolation argument. The continuity in
C([0, T ]; Bs

p,r × Bs
p,r ) ∩ C1([0, T ]; Bs−1

p,r × Bs−1
p,r ) for r < ∞ can be proved through

using a sequence of viscosity approximation of solutions (mε, nε)ε>0 to the system (1.4).
The sequence uniformly converges in C([0, T ]; Bs

p,r×Bs
p,r )∩C1([0, T ]; Bs−1

p,r × Bs−1
p,r ).

This completes the proof of Theorem 3.2. 
�
Remark 3.1. Apparently, for every s ∈ R, Bs

2,2 = Hs . Theorem 3.2 holds true in the

corresponding Sobolev spaces with 1
2 < s �= 3

2 , which almost improves the result of
Theorem 3.1 demonstrated by Kato’s theory with s ≥ 1 required. Therefore, Theorem 3.2
implies that the conclusion of Theorem 3.1 holds true for initial data (m0, n0) ∈ Hs(R)×
Hs(R) with s > 1

2 or for all initial data (u0, v0) ∈ Hs(R) × Hs(R) with s > 5
2 .

4. Blow-Up

In this section, we derive the precise blow-up scenario of strong solutions to the system
(1.4) and then provide a new blow-up result with respect to initial data.

Theorem 4.1. Let (m0, n0) ∈ Hs(R) × Hs(R) with s > 1
2 and T be the maximal exis-

tence time of the solution (m, n) to the system (1.4), which is guaranteed by Remark 3.1.
If T < ∞, then ∫ T

0
||m(τ )||L∞||n(τ )||L∞dτ = ∞.

Proof. Let us prove the theorem using the mathematical induction with respect to the
regular index s (s > 1

2 ).

Step 1. For s ∈ ( 1
2 , 1), by Lemma 2.2 and The system (1.4), we have

||m(t)||Hs ≤ ||m0||Hs + C
∫ t

0
||m(τ )||Hs (||uv − uxvx ||L∞ + ||ux n + vx m||L∞)dτ

+C
∫ t

0
(||((ux n + vx m) − (uvx − uxv)

)
m(τ )||Hs + ||ux (τ )||Hs )dτ

and

||n(t)||Hs ≤ ||n0||Hs + C
∫ t

0
||n(τ )||Hs (||uv − uxvx ||L∞ + ||ux n + vx m||L∞)dτ

+C
∫ t

0

(||((ux n + vx m) + (uvx − uxv)
)
n(τ )||Hs + ||vx (τ )||Hs

)
dτ.

Noticing that u = (1 − ∂2
x )−1m = p ∗ m with p(x) � 1

2 e−|x | (x ∈ R), ux = ∂x p ∗ m,
uxx = u − m and ||p||L1 = ||∂x p||L1 = 1, together with the Young inequality, for all
s ∈ R we have

||u||L∞, ||ux ||L∞ , ||uxx ||L∞ ≤ C ||m||L∞ (4.1)
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and

||u||Hs , ||ux ||Hs , ||uxx ||Hs ≤ C ||m||Hs . (4.2)

Similarly, the identity v = p ∗ n ensures

||v||L∞, ||vx ||L∞ , ||vxx ||L∞ ≤ C ||n||L∞ (4.3)

and

||v||Hs , ||vx ||Hs , ||vxx ||Hs ≤ C ||n||Hs . (4.4)

Therefore, we get the following two estimates:

||((ux n + vx m) − (uvx − uxv)
)
m||Hs + ||ux ||Hs

≤ C(||m||L∞||n||L∞ + 1)||m||Hs (4.5)

and

||uv − uxvx ||L∞ + ||ux n + vx m||L∞ ≤ C ||m||L∞||n||L∞ . (4.6)

Hence, we obtain

||m(t)||Hs ≤ ||m0||Hs + C
∫ t

0
(||m(τ )||L∞||n(τ )||L∞ + 1)||m(τ )||Hs dτ.

Likewise for n(t), we have

||n(t)||Hs ≤ ||n0||Hs + C
∫ t

0
(||m(τ )||L∞||n(τ )||L∞ + 1)||n(τ )||Hs dτ.

So, we arrive at

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||L∞||n||L∞ + 1)(||m||Hs + ||n||Hs )dτ. (4.7)

Taking advantage of the Gronwall’s inequality gives

||m(t)||Hs + ||n(t)||Hs ≤ (||m0||Hs + ||n0||Hs )

×eC
∫ t

0 (||m||L∞||n||L∞ +1)dτ . (4.8)

Therefore, if T < ∞ satisfies
∫ T

0 ||m(τ )||L∞||n(τ )||L∞dτ < ∞, then we deduce from
(4.8) that

lim sup
t→T

(||m(t)||Hs + ||n(t)||Hs ) < ∞, (4.9)

which contradicts with the assumption that T < ∞ is the maximal existence time. This
completes the proof of the theorem for s ∈ ( 1

2 , 1).
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Step 2. For s ∈ [1, 3
2 ), applying Lemma 2.1 (1) to the first equation of the system (1.4),

we have

||m(t)||Hs ≤ ||m0||Hs + C
∫ t

0
||m(τ )||Hs ||ux n + vx m||

H
1
2 ∩L∞dτ

+C
∫ t

0
(||((ux n + vx m) − (uvx − uxv)

)
m(τ )||Hs + ||ux (τ )||Hs )dτ.

Noticing that

||ux n + vx m||
H

1
2 ∩L∞ ≤ C ||ux n + vx m||

H
1
2 +ε0

≤ C ||m||
H

1
2 +ε0

||n||
H

1
2 +ε0

,

where ε0 ∈ (0, 1
2 ). Using (4.5) and the fact that H

1
2 +ε0(R) ↪→ H

1
2 (R) ∩ L∞(R), leads

to

||m(t)||Hs ≤ ||m0||Hs + C
∫ t

0
(||m||

H
1
2 +ε0

||n||
H

1
2 +ε0

+ 1)||m(τ )||Hs dτ.

For the second equation of the system (1.4), we can deal with it in a similar way and
obtain that

||n(t)||Hs ≤ ||n0||Hs + C
∫ t

0
(||m||

H
1
2 +ε0

||n||
H

1
2 +ε0

+ 1)||n(τ )||Hs dτ.

Hence, we have

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||

H
1
2 +ε0

||n||
H

1
2 +ε0

+ 1)(||m||Hs + ||n||Hs )dτ,

which implies the following results by the Gronwall’s inequality

||m(t)||Hs + ||n(t)||Hs ≤ (||m0||Hs + ||n0||Hs )

×e
C

∫ t
0 (||m||

H
1
2 +ε0

||n||
H

1
2 +ε0

+1)dτ
. (4.10)

Therefore, if T < ∞ satisfies
∫ T

0 ||m(τ )||L∞||n(τ )||L∞dτ < ∞, then we deduce from
the uniqueness of the solution to the system (1.4) and (4.9) with 1

2 + ε0 ∈ ( 1
2 , 1) that

||m(t)||
H

1
2 +ε0

||n(t)||
H

1
2 +ε0

is uniformly bounded in t ∈ (0, T ).

This along with (4.10) implies that

lim sup
t→T

(||m(t)||Hs + ||n(t)||Hs ) < ∞, (4.11)

which contradicts with the assumption that T < ∞ is the maximal existence time. Thus,
the theorem is also correct for s ∈ [1, 3

2 ).
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Step 3. For s ∈ (1, 2), differentiating the system (1.4) with respect to x , we have

∂t mx +
1

2
(uv − uxvx )∂x mx

=
(

1

2
(uvx − uxv) − (ux n + vx m)

)
mx − 1

2
((ux n + vx m)

−(uvx − uxv))x m − buxx

� R1(t, x)

and

∂t nx +
1

2
(uv − uxvx )∂x nx

=
(

−1

2
(uvx − uxv) − (ux n + vx m)

)
nx − 1

2
((ux n + vx m)

+(uvx − uxv))x n − bvxx

� R2(t, x).

By Lemma 2.2 with s − 1 ∈ (0, 1), we get

||mx (t)||Hs−1 ≤ ||∂x m0||Hs−1 + C
∫ t

0
||R1(τ )||Hs−1dτ

+C
∫ t

0
||mx (τ )||Hs−1(||uv − uxvx ||L∞ + ||ux n + vx m||L∞)dτ

and

||nx (t)||Hs−1 ≤ ||∂x n0||Hs−1 + C
∫ t

0
||R2(τ )||Hs−1dτ

+C
∫ t

0
||nx (τ )||Hs−1(||uv − uxvx ||L∞ + ||ux n + vx m||L∞)dτ.

Due to (2.3) and (4.1)–(4.4), we have

||[1

2
(uvx − uxv) − (ux n + vx m)]mx ||Hs−1

≤ C(||1

2
(uvx − uxv) − (ux n + vx m)||Hs ||m||L∞

+||1

2
(uvx − uxv) − (ux n + vx m)||L∞||mx ||Hs−1)

≤ C ||m||L∞||n||L∞||m||Hs ,

and

|| − 1

2
[(ux n + vx m) − (uvx − uxv)]x m + buxx ||Hs−1

≤ C(||m||Hs ||(ux n + vx m) − (uvx − uxv)||L∞

+||m||L∞||(ux n + vx m) − (uvx − uxv)||Hs ) + |b|||m||Hs−1

≤ C(||m||L∞||n||L∞ + 1)||m||Hs ,
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which together with (4.6) imply

||mx (t)||Hs−1 ≤ ||m0||Hs + C
∫ t

0
(||m(τ )||L∞||n(τ )||L∞ + 1)||m(τ )||Hs dτ,

and

||nx (t)||Hs−1 ≤ ||n0||Hs + C
∫ t

0
(||m(τ )||L∞||n(τ )||L∞ + 1)||n(τ )||Hs dτ.

Thus, we have

||mx (t)||Hs−1 + ||nx (t)||Hs−1

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||L∞||n||L∞ + 1)(||m||Hs + ||n||Hs )dτ.

Casting (4.7) with s − 1 and using the above inequality lead to

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||L∞||n||L∞ + 1)(||m||Hs + ||n||Hs )dτ.

Adopting the procedure similar to Step 1 guarantees the theorem is valid for s ∈ (1, 2).
Step 4. For s = k ∈ N and k ≥ 2, differentiating The system (1.4) k − 1 times with
respect to x gives

(
∂t +

1

2
(uv − uxvx )∂x

)
∂k−1

x m = −1

2

k−2∑
l=0

Cl
k−1∂

k−l−1
x (uv − uxvx )∂

l+1
x m − b∂k−1

x ux

−1

2
∂k−1

x [((ux n + vx m) − (uvx − uxv)) m]
� F1(t, x)

and

(
∂t +

1

2
(uv − uxvx )∂x

)
∂k−1

x n = −1

2

k−2∑
l=0

Cl
k−1∂

k−l−1
x (uv − uxvx )∂

l+1
x n − b∂k−1

x vx

−1

2
∂k−1

x [((ux n + vx m) + (uvx − uxv)) n]
� F2(t, x),

which together with Lemma 2.1 (1) imply

||∂k−1
x m(t)||H1 ≤||m0||Hk +

∫ t

0
||F1(τ )||H1dτ + C

∫ t

0
||ux n + vx m||

H
1
2 ∩L∞||m||Hk dτ

and

||∂k−1
x n(t)||H1 ≤ ||n0||Hk +

∫ t

0
||F2(τ )||H1dτ + C

∫ t

0
||ux n + vx m||

H
1
2 ∩L∞||n||Hk dτ.
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Because of inequalities (4.1)–(4.4), we have

|| − 1

2

k−2∑
l=0

Cl
k−1∂

k−l−1
x (uv − uxvx )∂

l+1
x m||H1

≤ C(k)

k−2∑
l=0

||∂k−l−1
x (uv − uxvx )||L∞||m||Hl+2

≤ C(k)

k−2∑
l=0

||uv − uxvx ||
Hk−l− 1

2 +ε0
||m||Hl+2

≤ C(k)||uv − uxvx ||
Hk− 1

2 +ε0
||m||Hk

≤ C(k)||m||
Hk− 1

2 +ε0
||n||

Hk− 1
2 +ε0

||m||Hk , (4.12)

|| − 1

2
∂k−1

x [((ux n + vx m) − (uvx − uxv))m] − b∂k−1
x ux ||H1

≤ C ||[(ux n + vx m) − (uvx − uxv)]m||Hk + |b|||ux ||Hk

≤ C(||m||L∞||m||L∞ + 1)||m||Hk

≤ C(||m||
Hk− 1

2 +ε0
||n||

Hk− 1
2 +ε0

+ 1)||m||Hk , (4.13)

and

||ux n + vx m||
H

1
2 ∩L∞ ≤ C ||ux n + vx m||

Hk− 1
2 +ε0

≤ C ||m||
Hk− 1

2 +ε0
||n||

Hk− 1
2 +ε0

,

where ε0 ∈ (0, 1
2 ) and

Hk− 1
2 +ε0(R) ↪→ H

1
2 +ε0(R) ↪→ H

1
2 (R) ∩ L∞(R) with k ≥ 2, (4.14)

is used in the above derivation. So, we obtain

||∂k−1
x m(t)||H1 ≤ ||m0||Hk + C

∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)||m||Hk dτ,

and

||∂k−1
x n(t)||H1 ≤ ||n0||Hk + C

∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)||n||Hk dτ,

which lead to

||∂k−1
x m(t)||H1 + ||∂k−1

x n(t)||H1

≤ ||m0||Hk + ||n0||Hk + C
∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)(||m||Hk + ||n||Hk )dτ.

Therefore by the Gronwall’s inequality and (4.10) with s = 1, we have

||m(t)||Hk + ||n(t)||Hk ≤ (||m0||Hk + ||n0||Hk )

×e
C

∫ t
0 (||m||

H
k− 1

2 +ε0
||n||

H
k− 1

2 +ε0
+1)dτ

. (4.15)
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If T < ∞ satisfies
∫ T

0 ||m(τ )||L∞||n(τ )||L∞dτ < ∞, applying Step 3 with 3
2 + ε0 ∈

(1, 2) and by induction with respect to k ≥ 2, we see that ||m(t)||
Hk− 1

2 +ε0
||n(t)||

Hk− 1
2 +ε0

is uniformly bounded in t ∈ (0, T ). By (4.15), we have

lim sup
t→T

(||m(t)||Hk + ||n(t)||Hk ) < ∞, (4.16)

which contradicts with the assumption that T < ∞ is the maximal existence time. This
completes the proof of the theorem for s = k ∈ N and k ≥ 2.

Step 5. For s ∈ (k, k + 1), k ∈ N and k ≥ 2, differentiating the system (1.4) k times
with respect to x yields

(
∂t +

1

2
(uv − uxvx )∂x

)
∂k

x m = −1

2

k−1∑
l=0

Cl
k∂

k−l
x (uv − uxvx )∂

l+1
x m − b∂k

x ux

−1

2
∂k

x [((ux n + vx m) − (uvx − uxv))m]
� G1(t, x)

and
(

∂t +
1

2
(uv − uxvx )∂x

)
∂k

x n = −1

2

k−1∑
l=0

Cl
k∂

k−l
x (uv − uxvx )∂

l+1
x n − b∂k

x vx

−1

2
∂k

x [((ux n + vx m) + (uvx − uxv))n]
� G2(t, x),

which together with Lemma 2.2 as s − k ∈ (0, 1) imply

||∂k
x m(t)||Hs−k ≤ ||∂k

x m0||Hs−k + C
∫ t

0
||G1(τ )||Hs−k dτ

+C
∫ t

0
(||uv − uxvx ||L∞ + ||ux n + vx m||L∞)||∂k

x m(τ )||Hs−k dτ

and

||∂k
x n(t)||Hs−k ≤ ||∂k

x n0||Hs−k + C
∫ t

0
||G2(τ )||Hs−k dτ

+C
∫ t

0
(||uv − uxvx ||L∞ + ||ux n + vx m||L∞)||∂k

x n(τ )||Hs−k dτ.

By (4.14) and using the procedure similar to (4.12)–(4.13), we obtain

|| − 1

2
∂k

x [((ux n + vx m) − (uvx − uxv))m] − b∂k
x ux ||Hs−k

≤ C(||m||
Hk− 1

2 +ε0
||n||

Hk− 1
2 +ε0

+ 1)||m||Hs ,

and

|| − 1

2

k−1∑
l=1

Cl
k∂

k−l
x (uv − uxvx )∂

l+1
x m||Hs−k ≤ C(k)||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
||m||Hs .
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Applying (2.3), (4.1)–(4.4), and (4.14) leads to

|| − 1

2
C0

k ∂k
x (uv − uxvx )mx ||Hs−k

≤ C(||mx ||Hs−k+1 ||∂k−1
x (uv − uxvx )||L∞ + ||mx ||L∞||∂k

x (uv − uxvx )||Hs−k )

≤ C(||m||Hs−k+2 ||uv − uxvx ||
Hk− 1

2 +ε0
+ ||m||

Hk− 1
2 +ε0

||uv − uxvx ||Hs )

≤ C ||m||
Hk− 1

2 +ε0
||n||

Hk− 1
2 +ε0

||m||Hs .

Thus, we have

||∂k
x m(t)||Hs−k ≤ ||m0||Hs + C

∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)||m||Hs dτ,

and

||∂k
x n(t)||Hs−k ≤ ||n0||Hs + C

∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)||n||Hs dτ,

which imply

||∂k
x m(t)||Hs−k + ||∂k

x n(t)||Hs−k

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)(||m||Hs + ||n||Hs )dτ.

Casting with (4.7) with s − k ∈ (0, 1) and using the above inequality lead to

||m(t)||Hs + ||n(t)||Hs

≤ ||m0||Hs + ||n0||Hs + C
∫ t

0
(||m||

Hk− 1
2 +ε0

||n||
Hk− 1

2 +ε0
+ 1)(||m||Hs + ||n||Hs )dτ.

By adopting Gronwall’s inequality, Step 3 with 3
2 +ε0 ∈ (1, 2), and the similar argument

as shown in Step 4, we can arrive at the desired result.
In summary, the above 5 steps complete the proof of the theorem. 
�

Remark 4.1. The maximal existence time T in Theorem 4.1 can be chosen independent
of the regularity index s. Let (m0, n0) ∈ Hs ×Hs with s > 1

2 and some s′ ∈ ( 1
2 , s). Then,

Remark 3.1 ensures that there exists a unique Hs×Hs (resp., Hs′×Hs′
) solution (ms, ns)

(resp., (ms′ , ns′)) to the system (1.4) with the maximal existence time Ts (resp., Ts′ ). Since
Hs ↪→ Hs′

, it follows from the uniqueness that Ts ≤ Ts′ and (ms, ns) ≡ (ms′ , ns′) on
[0, Ts). On the other hand, suppose that Ts < Ts′ , then (ms′ , ns′) ∈ C([0, Ts]; Hs′×Hs′

).
Hence, (ms′ , ns′) ∈ L2(0, Ts; L∞ × L∞), which together with the Holder inequality
leads to a contraction to Theorem 4.1. Therefore, Ts = Ts′ .

Utilizing the Sobolev’s embedding theorem and Theorem 4.1, we have the following
blow-up criterion.

Corollary 4.1. Let (m0, n0) ∈ Hs(R) × Hs(R) (s > 1
2 ) and T > 0 be the maximal

existence time of the corresponding solution (m, n) to the system (1.4).
Then, the solution (m, n) blows up in finite time if and only if

lim sup
t→T

||m(t, ·)||L∞ = ∞ or lim sup
t→T

||n(t, ·)||L∞ = ∞.
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Let us now turn our attention to the precise blow-up scenario for sufficiently regular
solutions to the system (1.4) with b = 0, which is required for discussion in the remaining
parts of this section. To do so, let us first consider the following initial value problem:{

∂t q(t, x) = 1
2 (uv − uxvx )(t, q(t, x)), (t, x) ∈ (0, T ) × R,

q(0, x) = x, x ∈ R,
(4.17)

for the flow q generated by 1
2 (uv − uxvx ).

The following lemmas are very crucial to the blow-up phenomena of strong solutions
to the system (1.4) with b = 0.

Lemma 4.1. Let (m0, n0) ∈ Hs(R) × Hs(R) (s > 1
2 ) and T > 0 be the maximal

existence time of the corresponding solution (m, n) to the system (1.4) with b = 0. Then
Eq. (4.17) has a unique solution q ∈ C1([0, T ) × R; R). Moreover, the mapping q(t, ·)
is an increasing diffeomorphism of R with

qx (t, x) = exp

(
1

2

∫ t

0
(ux n + vx m)(s, q(s, x))ds

)
> 0, (4.18)

for all (t, x) ∈ [0, T ) × R.

Proof. Since (u, v) ∈ C([0, T ); Hs(R) × Hs(R)) ∩ C1([0, T ); Hs−1(R) × Hs−1(R))

as s > 5
2 , it follows from the fact Hs−1(R) ↪→ Lip(R) (s > 5

2 ) that 1
2 (uv − uxvx )

is bounded and Lipschitz continuous in the space variable x and of class C1 in time
variable t . Then the classical ODE theory ensures that Eq. (4.17) has a unique solution
q ∈ C1([0, T ) × R; R). Differentiating Eq. (4.17) with respect to x gives{

∂t qx (t, x) = 1
2 (ux n + vx m)(t, q(t, x))qx (t, x), (t, x) ∈ (0, T ) × R,

qx (0, x) = 1, x ∈ R,

which leads to (4.18).
On the other hand, for all t < T , by Sobolev’s embedding theorem, we have

sup
(s,x)∈[0,T )×R

∣∣∣∣1

2
(ux n + vx m)(s, x)

∣∣∣∣ < ∞.

This along with (4.18) implies that there exists a constant C > 0 such that

qx (t, x) ≥ e−Ct , ∀ (t, x) ∈ [0, T ) × R.

So, the mapping q(t, ·) is an increasing diffeomorphism of R before its blow-up. 
�
Lemma 4.2. Let (m0, n0) ∈ Hs(R) × Hs(R) (s > 1

2 ) and T > 0 be the maximal
existence time of the solution (m, n) corresponding to the system (1.4) with b = 0. Then,
we have

m(t, q(t, x))qx (t, x) = m0(x) exp

(
1

2

∫ t

0
(uvx − uxv)(s, q(s, x))ds

)
, (4.19)

and

n(t, q(t, x))qx (t, x) = n0(x) exp

(
−1

2

∫ t

0
(uvx − uxv)(s, q(s, x))ds

)
. (4.20)
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for all (t, x) ∈ [0, T )×R. Moreover, if there exists a C > 0 such that (ux n+vx m)(t, x) ≥
−C and ||(uvx − uxv)(t, ·)||L∞ ≤ C for all (t, x) ∈ [0, T ) × R, then

||m(t, ·)||L∞ ≤ CeCt ||m0||Hs and ||n(t, ·)||L∞ ≤ CeCt ||n0||Hs , (4.21)

for all t ∈ [0, T ).

Proof. Differentiating the left-hand side of (4.19)–(4.20) with respect to t and making
use of (4.17)–(4.18) and the system (1.4), we have

d

dt
(m(t, q(t, x))qx (t, x))

= (mt (t, q) + mx (t, q)qt (t, x))qx (t, x) + m(t, q)qxt (t, x)

= (
mt +

1

2
(uv − uxvx )mx +

1

2
(ux n + vx m)m

)
(t, q(t, x))qx (t, x)

= 1

2
(uvx − uxv)(t, q(t, x))m(t, q(t, x))qx (t, x)

and

d

dt
(n(t, q(t, x))qx (t, x))

= (nt (t, q) + nx (t, q)qt (t, x))qx (t, x) + n(t, q)qxt (t, x)

= (
nt +

1

2
(uv − uxvx )nx +

1

2
(ux n + vx m)n

)
(t, q(t, x))qx (t, x)

= −1

2
(uvx − uxv)(t, q(t, x))n(t, q(t, x))qx (t, x),

which guarantee (4.19) and (4.20). By Lemma 4.1, in light of (4.18)–(4.20) and the
assumption, for all t ∈ [0, T ) we obtain

||m(t, ·)||L∞ = ||m(t, q(t, ·))||L∞

= ||e 1
2

∫ t
0 (uvx −ux v)(s,·)dsq−1

x (t, ·)m0(·)||L∞

≤ CeCt ||m0||Hs

and

||n(t, ·)||L∞ = ||n(t, q(t, ·))||L∞

= ||e− 1
2

∫ t
0 (uvx −ux v)(s,·)dsq−1

x (t, ·)n0(·)||L∞

≤ CeCt ||n0||Hs ,

which complete the proof of the lemma. 
�
The following theorem shows the precise blow-up scenario for sufficiently regular

solutions to the system (1.4) with b = 0.

Theorem 4.2. Let (m0, n0) ∈ Hs(R) × Hs(R) (s > 1
2 ) and T > 0 be the maximal

existence time of the solution (m, n) corresponding to the system (1.4) with b = 0. Then
the solution (m, n) blows up in finite time if and only if

lim inf
t→T

inf
x∈R

{(ux n + vx m)(t, x)} = −∞ or lim sup
t→T

(||(uvx − uxv)(t, ·)||L∞) = ∞.
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Proof. Assume that the solution (m, n) blows up in finite time (T < ∞) and there exists
a constant C > 0 such that

(ux n + vx m)(t, x) ≥ −C and ||(uvx − uxv)(t, ·)||L∞ ≤ C, ∀ (t, x) ∈ [0, T ) × R.

By (4.21), we have

∫ T

0
||m(t)||L∞||n(t)||L∞dt ≤ C2T e2CT ||m0||Hs ||n0||Hs < ∞,

which contradicts to Theorem 4.1.
On the other hand, by Sobolev’s embedding theorem, we can see that if

lim inf
t→T

inf
x∈R

{(ux n + vx m)(t, x)} = −∞ or lim sup
t→T

(||(uvx − uxv)(t, ·)||L∞) = ∞,

then the solution (m, n) will blow up in finite time. Now, the proof of the theorem is
completed. 
�
Remark 4.2. If v = 2u, then Theorem 4.2 recovers the corresponding result in [36].

In order to have a new blow-up criterion with respect to the initial data of strong
solutions to the system (1.4) with b = 0, we first investigate the transport equation in
terms of 1

2 (ux n + vx m), which is actually the slope of 1
2 (uv − uxvx ).

Lemma 4.3. Let (m0, n0) ∈ Hs(R) × Hs(R) with s > 1
2 and T > 0 be the maximal

existence time of the solution (m, n) corresponding to the system (1.4) with b = 0. Set
M = M(t, x) � (ux n + vx m)(t, x). Then for all (t, x) ∈ [0, T ) × R,

Mt +
1

2
(uv − uxvx )Mx

= −1

2
M2 − 1

2
n(1 − ∂2

x )−1(ux M) − 1

2
m(1 − ∂2

x )−1(vx M) − 1

2
n∂x (1 − ∂2

x )−1(uM)

−1

2
m∂x (1 − ∂2

x )−1(vM) − 1

2
(uvx − uxv)(ux n − vx m)

+
1

2
n∂x (1 − ∂2

x )−1 ((uvx − uxv)m) − 1

2
m∂x (1 − ∂2

x )−1 ((uvx − uxv)n) . (4.22)

Moreover, if m0(x), n0(x) ≥ 0 for all x ∈ R, then

|ux (t, x)| ≤ u(t, x), |vx (t, x)| ≤ v(t, x),

and

Mt +
1

2
(uv − uxvx )Mx ≤ −1

2
M2 +

7

2
||u||L∞||v||2L∞m +

7

2
||u||2L∞||v||L∞n,

for all (t, x) ∈ [0, T ) × R.
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Proof. As per Remark 4.1, here we just prove the lemma for the case of s ≥ 3. Appar-
ently, a direct calculation leads to

Mt +
1

2
(uv − uxvx )Mx

= uxt n + vxt m + ux nt + vx mt +
1

2
(uv − uxvx )(ux nx + vx mx + uxx n + vxx m).

(4.23)

From the system (1.4), we infer that

(1 − ∂2
x )(ut +

1

2
(uv − uxvx )ux )

= mt +
1

2
(1 − ∂2

x )((uv − uxvx )ux )

= −1

2
(uv − uxvx )mx − 1

2
(ux n + vx m)m +

1

2
(uvx − uxv)m +

1

2
(uv − uxvx )ux

−1

2
∂2

x ((uv − uxvx )ux )

= −1

2
(ux n + vx m)m +

1

2
(uvx − uxv)m − 1

2
(ux n + vx m)x ux − (ux n + vx m)uxx

= −1

2
(uM − (uvx − uxv)m + (ux M)x ).

Hence,

ut +
1

2
(uv − uxvx )ux

= −1

2
(1 − ∂2

x )−1(uM − (uvx − uxv)m + (ux M)x ). (4.24)

Likewise,

vt +
1

2
(uv − uxvx )vx

= −1

2
(1 − ∂2

x )−1(vM + (uvx − uxv)n + (vx M)x ). (4.25)

According to (4.24)–(4.25) and the system (1.4), we have

uxt n + vxt m

= −1

2
(uv − uxvx )(uxx n + vxx m) − 1

2
n∂x (1 − ∂2

x )−1(uM − (uvx − uxv)m)

−1

2
m∂x (1 − ∂2

x )−1(vM + (uvx − uxv)n) − 1

2
n(1 − ∂2

x )−1(ux M)

−1

2
m(1 − ∂2

x )−1(vx M) (4.26)

and

ux nt + vx mt = −1

2
(uv − uxvx )(ux nx + vx mx )

−1

2
M2 − 1

2
(uvx − uxv)(ux n − vx m),
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which together with (4.23) and (4.26) yield (4.22). Since m0(x), n0(x) ≥ 0 for all
x ∈ R, it follows from (4.18)–(4.20) that

m(t, x), n(t, x) ≥ 0, ∀ (t, x) ∈ [0, T ) × R. (4.27)

Noticing

u(t, x) = (1 − ∂2
x )−1m(t, x) = (p ∗ m)(t, x) = 1

2

∫
R

e−|x−y|m(t, y)dy,

then, we obtain

u(t, x) = e−x

2

∫ x

−∞
eym(t, y)dy +

ex

2

∫ ∞

x
e−ym(t, y)dy

and

ux (t, x) = −e−x

2

∫ x

−∞
eym(t, y)dy +

ex

2

∫ ∞

x
e−ym(t, y)dy,

which together with (4.27) imply

u(t, x) + ux (t, x) = ex
∫ ∞

x
e−ym(t, y)dy ≥ 0

and

u(t, x) − ux (t, x) = e−x
∫ x

−∞
eym(t, y)dy ≥ 0.

Hence, we have

|ux (t, x)| ≤ u(t, x), ∀ (t, x) ∈ [0, T ) × R, (4.28)

as well as

|vx (t, x)| ≤ v(t, x), ∀ (t, x) ∈ [0, T ) × R. (4.29)

Noticing

|∂x (1 − ∂2
x )−1 f (x)| =

∣∣∣∣1

2

∫
R

sgn(x − y)e−|x−y| f (y)dy

∣∣∣∣
≤ 1

2

∫
R

e−|x−y|| f (y)|dy

= (p ∗ | f |) (x),
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and applying (4.28)–(4.29) and the facts that u = p ∗ m, v = p ∗ n, we arrive at

−1

2
n(1 − ∂2

x )−1(ux M) − 1

2
m(1 − ∂2

x )−1(vx M)

≤ −1

2
n(p ∗ (uxvx m)) − 1

2
m(p ∗ (uxvx n))

≤ 1

2
||uv||L∞(un + vm),

−1

2
n∂x (1 − ∂2

x )−1(uM) − 1

2
m∂x (1 − ∂2

x )−1(vM)

≤ 1

2
n

(
||u2||L∞(p ∗ n) + ||uv||L∞(p ∗ m)

)

+
1

2
m

(
||uv||L∞(p ∗ n) + ||v2||L∞(p ∗ m)

)

= 1

2
||u2||L∞vn +

1

2
||v2||L∞um +

1

2
||uv||L∞(un + vm),

−1

2
(uvx − uxv)(ux n − vx m) ≤ ||uv||L∞(un + vm),

and

1

2
n∂x (1 − ∂2

x )−1((uvx − uxv)m) − 1

2
m∂x (1 − ∂2

x )−1((uvx − uxv)n)

≤ ||uv||L∞ (n(p ∗ m) + m(p ∗ n))

= ||uv||L∞(un + vm),

which along with (4.22) complete the proof of the lemma. 
�
It is worth pointing out that Theorem 4.2, Lemma 4.2 and (4.1)–(4.3) tell us that a

sufficient condition for the fine structure of finite time singularities is that there exists a
constant C = C(||m0||Hs , ||n0||Hs ) > 0 such that

||u(t, ·)||L∞, ||v(t, ·)||L∞ ≤ CeCt , for all t ∈ [0, T ).

Also, as mentioned in the Sect. 1, for the special case of Eq. (1.1) with b = 0, one can
apply the following conservation laws

H �
∫

R

umdx =
∫

R

(u2 + u2
x )dx

and Sobolev’s embedding theorem to uniformly bound ||u(t, ·)||L∞(R). However, one
cannot utilize any appropriate conservation laws of the system (1.4) to control ||u(t, ·)||L∞
and ||v(t, ·)||L∞ directly. Anyway, the uniform boundedness for the solution u to Eq.
(1.1) with b = 0 can be viewed as a special case of the above exponential increase
assumed in finite time.

Theorem 4.3. Suppose that (m0, n0) ∈ Hs(R) × Hs(R) (s > 1
2 ) and T > 0 be the

maximal existence time of the solution (m, n) corresponding to the system (1.4) with
b = 0. Assume that there exists a constant C = C(||m0||Hs , ||n0||Hs ) > 0 such that

||u(t, ·)||L∞, ||v(t, ·)||L∞ ≤ CeCt , for all t ∈ [0, T ).
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Let M(t) � M(t, q(t, y0)) = inf
x∈R

M(t, x) for some y0 ∈ R, which is guaranteed by

Remark 3.1 and Lemma 4.1, and N (t) � (m + n)(t, q(t, y0)). Let m0(x), n0(x) ≥ 0
for all x ∈ R, and m0(x0), n0(x0) > 0 for some x0 = q(0, y0), which is ensured by
Lemma 4.1. If M(0) < −2C and

M(0)

N (0)
< −e(eCη−1)

(
2

ηN (0)
+ 1

)
+ 1, (4.30)

where η is the unique positive solution to the following equation w.r.t. t:

e(eCt −1)

(
C

N (0)
eCt +

1

2
CteCt +

1

2

)
+

1

2

(
M(0)

N (0)
− 1

)
= 0, t ≥ 0.

Then the solution (m, n) blows up at a time T0 ∈ (0, η].
Proof. In view of Remark 4.1, here let us prove the theorem for the case of s ≥ 3. By
(4.17), Lemma 4.3 and the assumption of the theorem, we have

d

dt
M(t) = d

dt
M(t, q(t, y0))

= (Mt +
1

2
(uv − uxvx )Mx )(t, q(t, y0))

≤ −1

2
M2(t) + CeCt N (t). (4.31)

From the system (1.4), we get

d

dt
N (t) = d

dt
m(t, q(t, y0)) +

d

dt
n(t, q(t, y0))

= −1

2
M(t)N (t) +

1

2
(uvx − uxv)(m − n)(t, q(t, y0)). (4.32)

Apparently, (4.19)–(4.20) and the assumption imply N (t) > 0 for all t ∈ [0, T ). By
(4.28)–(4.29) and (4.31)–(4.32), a direct computation leads to

N (t)
d

dt
M(t) − M(t)

d

dt
N (t)

≤ CeCt N 2(t) − 1

2
(uvx − uxv)(m − n)(t, q(t, y0))M(t)

≤ CeCt N 2(t) + ||uv||L∞(||u||L∞n + ||v||L∞m)N (t)

≤ CeCt N 2(t),

which gives

d

dt

(
M(t)

N (t)

)
≤ CeCt .

Integrating from 0 to t yields

M(t)

N (t)
≤ M(0)

N (0)
+ C

∫ t

0
eCτ dτ = M(0)

N (0)
+ eCt − 1,
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which implies

M(t) ≤
(

M(0)

N (0)
− 1 + eCt

)
N (t). (4.33)

On the other hand, according to (4.32) and Lemma 4.3, we have

M(t) ≥ −2

N (t)

d

dt
N (t) − CeCt ,

which along with (4.33) gives rise to

d

dt

(
1

N (t)

)
≤ CeCt 1

N (t)
+

1

2

(
M(0)

N (0)
− 1 + eCt

)
. (4.34)

Since M(0) < −2C , M(0)
N (0)

< 1, it follows from the Gronwall’s inequality for (4.34) and
the fact x ≤ ex − 1 that

0 <
1

N (t)
≤ 1

N (0)
e
∫ t

0 CeCτ dτ +
1

2

∫ t

0
e
∫ t
τ CeCs ds

(
M(0)

N (0)
− 1 + eCτ

)
dτ

= 1

N (0)
e(eCt −1) +

1

2

∫ t

0
e(eCt −eCτ )eCτ dτ

+
1

2

∫ t

0
e
∫ t
τ CeCs ds

(
M(0)

N (0)
− 1

)
dτ

≤ 1

N (0)
e(eCt −1) +

1

2

∫ t

0
e(eCt −1)dτ +

1

2

(
M(0)

N (0)
− 1

)
t

= e(eCt −1)

(
1

N (0)
+

1

2
t

)
+

1

2

(
M(0)

N (0)
− 1

)
t

� f (t), (4.35)

which generates

f ′(t) = e(eCt −1)

(
C

N (0)
eCt +

1

2
CteCt +

1

2

)
+

1

2

(
M(0)

N (0)
− 1

)
.

Since M(0) < −2C ensures f ′(0) = C
N (0)

+ M(0)
2N (0)

< 0, it follows from the facts

f ′′(t) = e(eCt −1)

(
CeCt

(
C

N (0)
eCt +

Ct

2
eCt +

1

2

)

+C2eCt
(

1

N (0)
+

t

2

)
+

C

2
eCt

)
> 0

and limt→+∞ f ′(t) = +∞ that there exists an unique η > 0 such that f ′(η) = 0 and

f ′(t)
{

< 0, if 0 ≤ t < η,

> 0, if t > η.
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By (4.30), we have f (η) < 0. Noticing f (0) = 1
N (0)

> 0 and f (t) ∈ C[0, +∞), we
can find a finite number T0 ∈ (0, η] such that

f (t) → 0+, as t → T0,

which together with (4.35) yields

N (t) → +∞, as t → T0.

By using (4.30) again, we get M(0)
N (0)

− 1 + eCη < 0. This along with (4.33) ensures

inf
x∈R

(ux n + vx m)(t, x) = M(t) → −∞, as t → T0.

So, according to Theorem 4.2, the solution (m, n) blows up at the time T0 ∈ (0, η],
which completes the proof of the theorem. 
�

5. Peakon and Weak Kink Solutions

In this section, we provide some explicit solutions to the system (1.3), such as peakon
and weak kink solutions. To see this, let us first write the weak form of the system (1.3).
Apparently, for all f ∈ L2(R), we have (1−∂2

x )−1 f = p∗ f where p is Geen’s function
p(x) � 1

2 e−|x |, which then yields u = p ∗ m, and v = p ∗ n. So, we can rewrite the
system (1.3) in the following weak form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + 1
2 (uv − uxvx )ux − 1

2∂x p ∗ [(uxvx )x ux − 2bu]
+ 1

2 p ∗ [2uvux + (uux )xvx + (uxv)x ux ] = 0,

vt + 1
2 (uv − uxvx )vx − 1

2∂x p ∗ [(uxvx )xvx − 2bv]
+ 1

2 p ∗ [2uvvx + (vvx )x ux + (uvx )xvx ] = 0.

(5.1)

Let us now present the peakon solution to (1.3) with b = 0 in the following theorem.

Theorem 5.1.

u = c1e−|x−ct |, v = c2e−|x−ct | (5.2)

are the single peakon solutions to the system (5.1) with b = 0 in the sense of distribution,
where c1 and c2 are two arbitrary nonzero constants satisfying c1c2 = 3c and c is the
wave speed of u and v.

Proof. From (5.2), in the sense of distribution, one can easily get

ut = c · sgn(x − ct)u, ux = −sgn(x − ct)u,

vt = c · sgn(x − ct)v, vx = −sgn(x − ct)v,
(5.3)

which generate

ut +
1

2
(uv − uxvx )ux

= c · sgn(x − ct)u − 1

2
sgn(x − ct)u

(
uv − sgn2(x − ct)uv

)

= sgn(x − ct)u

(
c − 1

2

(
1 − sgn2(x − ct)

)
uv

)

= cc1sgn(x − ct)e−|x−ct | (if x �= ct), (5.4)
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and

(uxvx )x ux = −
(

sgn2(x − ct)uv
)

x
sgn(x − ct)u

= −2sgn2(x − ct)
(
(sgn(x − ct))x − sgn2(x − ct)

)
u2v.

Then, we have

−1

2
∂x p ∗ ((uxvx )x ux )

= ∂x p ∗
(

sgn2(x − ct) (sgn(x − ct))x u2v − sgn4(x − ct)u2v
)

� I1 + I2,

where

I1 = c2
1c2

6
∂x

∫ ∞

−∞
e−|x−y|e−3|y−ct | (sgn3(y − ct)

)
y

dy

= −c2
1c2

6
∂x

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn3(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy,

and

I2 =
(

−1

2
sgn(x)e−|x |

)
∗

(
−sgn4(x − ct)u2v

)

= c2
1c2

2

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn(x − y)sgn4(y − ct)dy.

In the above calculation, ∂x p(x) = − 1
2 sgn(x)e−|x | is used. Thus, we obtain

−1

2
∂x p ∗ ((uxvx )x ux )

= −c2
1c2

6
∂x

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn3(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy

+
c2

1c2

2

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn(x − y)sgn4(y − ct)dy, (5.5)

and

2uvux + (uux )xvx + (uxv)x ux

= −2sgn(x − ct)u2v +
(

sgn(x − ct)u2
)

x
sgn(x − ct)v

+ (sgn(x − ct)uv)x sgn(x − ct)u

= 2sgn(x − ct)
(
(sgn(x − ct))x − 2sgn2(x − ct) − 1

)
u2v,
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which lead to

1

2
p ∗ (2uvux + (uux )xvx + (uxv)x ux )

= p ∗
(

sgn(x − ct) (sgn(x − ct))x u2v
)

−p ∗
(

sgn(x − ct)
(

2sgn2(x − ct) + 1
)

u2v
)

� I I1 + I I2,

where

I I1 = c2
1c2

4

∫ ∞

−∞
e−|x−y|e−3|y−ct | (sgn2(y − ct)

)
y

dy

= −c2
1c2

4

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn2(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy,

and

I I2 = −c2
1c2

2

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn(y − ct)

(
2sgn2(y − ct) + 1

)
dy.

Thus, we get

1

2
p ∗ (2uvux + (uux )xvx + (uxv)x ux )

= −c2
1c2

4

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn(y − ct)

×
(

2 + sgn2(y − ct) + sgn(x − y)sgn(y − ct)
)

dy,

which along with (5.5) leads to

−1

2
∂x p ∗ ((uxvx )x ux ) +

1

2
p ∗ (2uvux + (uux )xvx + (uxv)x ux )

= −c2
1c2

6
∂x

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn3(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy

−c2
1c2

4

∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn(y − ct){sgn(x − y)sgn(y − ct)

×
(

1 − 2sgn2(y − ct)
)

+ 2 + sgn2(y − ct)}dy

� I I I + I V .

Next, we calculate I I I + I V in the following two cases.
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Case 1: x > ct .
∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn3(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy

=
(∫ ct

−∞
+

∫ x

ct
+

∫ ∞

x

)
e−|x−y|e−3|y−ct |sgn3(y − ct)(sgn(x − y)

−3sgn(y − ct))dy

= −4e−x−3ct
∫ ct

−∞
e4ydy − 2e−x+3ct

∫ x

ct
e−2ydy − 4ex+3ct

∫ ∞

x
e−4ydy

= −e−x+ct + e−3x+3ct − e−x+ct − e−3x+3ct

= −2e−(x−ct)

yields

I I I = −c2
1c2

6
∂x (−2e−(x−ct)) = −c2

1c2

3
e−(x−ct).

Similarly, we have

I V = −c2
1c2

4

(
−4e−x−3ct

∫ ct

−∞
e4ydy + 2e−x+3ct

∫ x

ct
e−2ydy + 4ex+3ct

∫ ∞

x
e−4ydy

)

= −c2
1c2

4

(
−e−x+ct − e−3x+3ct + e−x+ct + e−3x+3ct

)
= 0.

So,

I I I + I V = −c2
1c2

3
e−(x−ct), if x > ct. (5.6)

Case 2: x ≤ ct .
∫ ∞

−∞
e−|x−y|e−3|y−ct |sgn3(y − ct) (sgn(x − y) − 3sgn(y − ct)) dy

=
(∫ x

−∞
+

∫ ct

x
+

∫ ∞

ct

)
e−|x−y|e−3|y−ct |sgn3(y − ct)(sgn(x − y)

−3sgn(y − ct))dy

= −4e−x−3ct
∫ x

−∞
e4ydy − 2ex−3ct

∫ ct

x
e2ydy − 4ex+3ct

∫ ∞

ct
e−4ydy

= −e3x−3ct + e3x−3ct − ex−ct − ex−ct

= −2ex−ct ,

leads to

I I I = −c2
1c2

6
∂x (−2ex−ct ) = c2

1c2

3
ex−ct .
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Likewise, we get

I V = −c2
1c2

4

(
−4e−x−3ct

∫ x

−∞
e4ydy − 2ex−3ct

∫ ct

x
e2ydy + 4ex+3ct

∫ ∞

ct
e−4ydy

)

= −c2
1c2

4

(
−e3x−3ct + e3x−3ct − ex−ct + ex−ct

)
= 0.

So,

I I I + I V = c2
1c2

3
ex−ct , if x ≤ ct. (5.7)

Therefore combining (5.6) with (5.7) gives

I I I + I V = −c2
1c2

3
sgn(x − ct)e−|x−ct |. (5.8)

By (5.4) and (5.8) with the assumption c1c2 = 3c, one may immediately see that the
first equation of the system (5.1) holds in the sense of distribution. So does the second
one in the system (5.1) duo to the symmetry of u and v. Therefore, we complete the
proof of the theorem. 
�
Remark 5.1. In particular, if c2 = 2c1 in Theorem 5.1, we recover the single peakon

solution u = ±
√

3c
2 e−|x−ct | of the cubic CH equation (1.1) with b = 0 [36,50].

Next, let us show that the system (5.1) with b �= 0 possesses a weak kink solution.
We assume the system (5.1) admits the following wave solutions

u = C1sgn(x − ct)
(

e−|x−ct | − 1
)

, v = C2sgn(x − ct)
(

e−|x−ct | − 1
)

, (5.9)

where C1 and C2 are two nonzero constants to be determined, and c is the wave speed.
the solution form (5.9) is called the weak kink wave, which is recently proposed in
[50,56]. In fact, if C1 �= 0 and C2 �= 0, then the potentials u and v in (5.9) are kink wave
solutions due to

lim
x→+∞ u = − lim

x→−∞ u = −C1,

lim
x→+∞ v = − lim

x→−∞ v = −C2. (5.10)

One may easily check that in the sense of distribution, the first order partial derivatives
of (5.9) read

ut = cC1e−|x−ct |, ux = −C1e−|x−ct |,
vt = cC2e−|x−ct |, vx = −C2e−|x−ct |. (5.11)

Similar to the proof of Theorem 5.1, we can readily prove the following result.
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Fig. 1. The weak kink solution at t = 0. Black line u(x, 0) and Blue line v(x, 0) (color figure online)

Theorem 5.2. Assume that {
C1C2 = −b,

c = 1
2 b.

(5.12)

Then (5.9) is the weak kink solution to the system (5.1) with b �= 0 in the sense of
distribution.

Remark 5.2. (1) The second identity in (5.12) implies that the weak kink wave speed
is exactly equal to 1

2 b, that is, the weak kink wave occurs only when its wave speed
c = 1

2 b.
(2) In particular, if we take b = 2 and C1 = 1, then c = 1, C2 = −2, and the

corresponding weak kink solutions are cast into

u = sgn(x − t)
(

e−|x−t | − 1
)

, v = −2sgn(x − t)
(

e−|x−t | − 1
)

.

See the following Fig. 1 for the details of the profile for the weak kink wave solution.
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