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ABSTRACT

The Born approximation is a common approach taken in modeling the physics of SAR imaging. In essence it says
that radiation only scatters once when in space. This is a reasonable assumption for targets that lie far apart or
that are far from the transmit and receive antennas, but it introduces error into the imaging process. The goal
of this paper is to iteratively compensate for this error by using estimates of the target distribution to estimate
multiple scattering phenomena. We will use a noise reduction technique at each iteration on the corrected data as
well as the estimated image to control any excess error caused by the estimated multiple scattering phenomena.
The physical model for our work will be based on the wave equation. We will briefly derive the important features
of the model as well as account for the error brought by common approximations that are made. Typically one
does not get an image that is approximately the target distribution, but rather an image that is approximately
proportional to the target distribution. This means that there is a scaling parameter that must be chosen when
using target distribution estimates to correct data. We will discuss methods for choosing this parameter. We
will provide a few basic SAR imaging methods and perform simulation using the Gotcha Data set in combination
with the iterative technique. At the end of the paper we will outline future work involving this method.
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1. INTRODUCTION

Traditional RADAR is an imaging modality that has grown considerably since WWII. As the acronym RAdio
Detection And Ranging suggest, its primary interest early on was in detecting and finding the distance to targets.1
Roughly speaking, in an active system one would focus a narrow beam of radiation into some region of interest.
A receiving antenna measures radiation and if the power is above some noise threshold or if the amount time
taken for a signal to return was short enough, it determined target presence at a certain range. Traditional
radar equations are concerned with the maximum detectable range. If transmitted radiation lies in some cone
emanating from the transmitter, one can discern that any target must lie in this cone. Eventually this evolved
to include finding the azimuth of a certain target by designing antennas which restrict the beam of radiation to
a certain cone of illumination. It turns out that larger antenna apertures lead to smaller cones (beam width)
of illumination. This would seem to solve the 2 − d imaging problem if large antennas were practical. They
are not. An alternative is to use multiple sensors to estimate the direction of arrival of the radiation.2 This
requires several smaller antennas and is an active area of research.2,3 With the advent of powerful computers the
trend has been to move the work of imaging from hardware to software. That is, we collect data from multiple
transmissions at several points in space and use the data coherently to develop an estimation of our targets.
The basic idea of Synthetic Aperture RADAR (SAR) is to move a single (or several) small antenna(s) through
space and collect data which is combined to provide an estimate of our targets. This is slower than traditional
RADAR but allows for finer azimuth resolution.4 Radiation scattered from a set of targets is determined by
a nonlinear integral equation with kernel dependent on the target distribution. The mathematics of such a
scenario can be quite complicated and as such several approximations are taken. First, one usually assumes
that the antenna is moving slow enough that it can be considered stationary5 while radiation propagates and
returns to the antenna. Then one may make the assumption that the targets are only in a small region of space
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that is far from the antenna. Finally, to linearize the integral equation one takes the Born approximation6,7
and assumes that after a target scatters radiation, the resulting field does not scatter again in a way that is
noticeable. Our primary concern in this study is to compensate for errors in image formation that are caused by
the Born approximation. The idea is that we may use estimates of our targets to estimate higher order scattering
and remove it from the collected data. In order for this method to be robust we do not concern ourselves with
image formation, but rather image improvement using some given image formation algorithm. In general we
consider a linear imaging operator that acts on our data to produce an image estimate. The structure of the
remainder of this paper is as follows. In section 2 we introduce the model used. Next, in section 3 we define
a scattering operator, high order scattering and the Born approximation. After this, in section 4 we examine
the suitability of the Born approximation. This is followed by our iterative algorithm for removing artifacts
introduced by this approximation and a computational analysis of the performance of our algorithm in sections
4 and 5 respectively. In the conclusion we summarize our results and discuss further research in this direction.
A rudimentary analysis of the scattering operator is given in the appendix.

2. BACKGROUND AND MODEL FORMULATION

One can abstract away much of the physical aspects of SAR imaging in order to focus directly on recreating
images. In this section we address the notation and mathematics used in the rest of the paper. In a fairly general
sense, we deal with the action of two operators on two Hilbert spaces: a scattering operator L, and an imaging
operator I. The imaging operator acts on our field space F to produce an approximate image from our image
space V. Making these Hilbert spaces gives us a way to measure error in an approximation as well as discuss
convergence of sequences of approximations. With this space comes the induced norm ‖ · ‖ = √< ·, · > which
in turn can be used to define a distance function by d(·, ·) = ‖ · − · ‖. Our primary concern and analysis with
regard to the scattering operator. A bilinear operator is a map from two linear spaces to a third linear that
is linear each of its arguments. If we consider F to be a linear space of possible fields, and V a linear space of
possible reflectivity functions, then our scattering operator is bilinear from V×F to F. A bilinear operator may
also be viewed as a family of linear operators indexed by one of its arguments. That is, for every fixed image our
scattering operator is simply a linear operator. We consider the scalar wave model3,6–11 in the frequency domain
(Helmholtz equation) and its respective scattering operator. In this model, which is a special case of Maxwell’s
equations, we assume that any component of electro magnetic (EM) radiation satisfies the wave equation. The
EM field u is broken up into an unknown scattered usc, and a known incident portion uin such that

u(x,w) = usc(x,w) + uin(x,w), (1)

(
∇2 +

w2

c(x)2

)
u = −j(x,w), (2)

and (
∇+

w2

c20

)
uin = −j(x,w) (3)

where c0 is the speed of light in free space, c(x,w) is the speed of light at some point x ∈ R3 and frequency w,
and j(x,w) is the source of the field.

We define our reflectivity function3,6–8,12 by

v(x,w) =
1
c20

−
1

c(x,w)2
. (4)

The reflectivity function gives us an idea of what our target distribution looks like. It is zero when there is no
target at the given point, and largest in absolute value when the wave speed is minimum. The goal of RADAR
imaging in the wave model is then to solve for (4). The free space Helmholtz equation may be solved by the
method of Green’s functions. That is, we can solve the equation by integrating against a certain delayed version
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Figure 1. Incident and Born approximated scattered field on left and right, respectively.

of some known function(convolving with) called a Green’s function. The Green’s8 function corresponding to the
free space Helmholtz equation is

G(x,w) =
e
−iw

‖x‖
c0

4π‖x‖
. (5)

Combining (1), (2), and (3), and assuming that our targets are stationary, we can find the scattered field as the
solution to a free space Helmholtz equation8 which combined with (5) can gives us the integral formulation for
the scattered field

usc(x,w) = −w2
∫
R3

e
−iw

‖x−z‖
c0 v(z)u(z,w)
4π‖x− z‖

dz. (6)

This form is a variant of the Lippmann Schwinger equation.8 If we know the total field u, then finding an
imaging operator is equivalent to finding an approximate left inverse to this equation8 and can take the form
of an oscillatory integral.4 Sadly, we do not know u since it is dependent on usc by (1). The purpose of the
Born approximation is to remove this non-linearity by approximating the total field by the incident field. To be
formal about this we must define our scattering operator.

3. SCATTERING OPERATOR AND HIGH ORDER SCATTERING

Let ψ ∈ V and φ ∈ F. Then we define the scattering operator as the map from V× F to F by

L(ψ,φ) = −w2
∫
R3

e
−iw

‖x−z‖
c0 ψ(z)φ(z,w)
4π‖x− z‖

dz (7)

If the scattering operator behaves nicely (see appendix) then we can solve for the scattered field explicitly in
terms of the incident field via the Neumann series8

usc =

∞∑
n=1

Ln{v(x),uin} (8)

where Ln{v(x),uin} = L{v(x),Ln−1{uin}} and L0 = I is the identity operator. Physically, the first term in the
series corresponds to radiation interacting with the targets and getting scattered. The second term corresponds
to this first scattered field again interacting with targets and getting scattered again. In general the n-th term
is the n− 1-th term being scattered. Adding all of these together we get the scattered field. The scattered field
is then the sum of these rescattered fields.
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We discuss the singularity present in the appendix. Throughout the rest of the paper convergence of the
series is assumed, meaning we restrict our field and image space to those that allow the series to make sense.
With this, we have an integral representation for the scattered field in which the only unknown is the reflectivity
function and the scattered field. The idea in SAR is to move through space and measure the scattered field to
solve for the reflectivity function. In this form the problem is still fairly difficult even if we completely know the
scattered field. For this reason one typically assumes the higher order terms in the sum are negligible. This is
called the Born approximation. The incident field is dependent on the source in the original model. This in turn
is dependent on a known input signal from the space S. One then uses an imaging operator I : F × S → V on
the Born approximated data and the input signal to estimate the reflectivity function. Our goal is to use this
estimated image to estimate and remove the higher order terms from the scattered data up to some finite number
N. From experimentation it is evident that estimated reflectivity functions tend to be scaled improperly. That is
to say, the positions of targets are accurate, and their relative values are reasonable, but the estimated reflectivity
values are off. To resolve this we simply scale the estimated high order scattering. In addition, estimates tend
to look fairly noisy, so we must perform some denoising operator N before using the image estimate. Formally
we create a sequence of sequence of estimates {V̂N

k } in V by

V̂N
k+1 = I

{
d−

N∑
n=2

Ln{λkN{VN
k },Uin}

}
(9)

where λk is a scaling parameter. The fact that L is linear in its first argument allows us to either scale the
estimated image first then scatter it, or to scale the scattered unscaled image. The order does matter when
round off error is taken into account, so we scale before scattering, but after noise reduction. We will discuss the
specifics later, but first let’s consider when it is appropriate to use this method. We do not establish convergence
of this method, but test it computationally.

4. SUITABILITY OF METHOD

Here, we discuss when high order scattering may lead to artifacts during image formation. We give some idea of
the error introduced with the truncated sum. Recall that the index of refraction is defined by

n(x,w) =
c0

c(x,w)
(10)

and is related to our reflectivity function by

1− n2(x)
c20

= v(x). (11)

Since indices tend to be small compared to the speed of light, the reflectivity function will be small. One may
consult a table to see how small v(x) will be. For this reason we assume that |v(x)| is bounded and that every
value is less than the least upper bound sup(v(x)) of v(x). Further, we assume that it is only non-zero outside
of some finite radius region denoted supp(v(x)), and that uin(x,w) has finite bandwidth B around some center
frequency w0. For any field, the scattering operator has the following bound

|L{v(x),φ}(x,w)| 6 (w0 +
B

2
)2|sup(v(z))| sup |φ|C(supp(v(x))) (12)

for some constant C dependent on the size of the reflectivity function. Then the n-th order term in the scattered
field sum can be bounded by

|Ln{v(x),uin}(x,w)| 6 ((w0 +
B

2
)2|sup(v(z))|C(supp(v(x))))n sup {uin}. (13)

If |sup(v(z))|C(supp(v(x))) < 1
(w0+

B
2 )2

, the terms in the series decrease. So, we have that the error in the Born
approximation is largest for high frequencies, and large reflective targets.
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5. COMPUTATION OF THE SCATTERING OPERATOR AND NEUMANN SERIES

There are several efficient methods to evaluate the oscillatory integral that defines the scattering operator.4,13
For simplicity we use a Riemann sum to evaluate the scattering operator at this point. We can efficiently evaluate
a truncation of the scattering series by applying Horner’s method to calculate the scattered field by:14

usc
N = L{uin + L{uin + . . .L{uin}}}

At this point we did not use a noise reduction method. In a rough approach, the Born approximated scattered
field turns out to be the spatial Fourier transform of the reflectivity function sampled at varying frequencies.
One can form an estimate then by taking the inverse transform of the scattered field.15,16 This is the approach
we use. We will pick a fixed scaling parameter λ for each step in the iteration.

6. CONCLUSION

There were several problems with the experiment. To push things forward it seems we need to use some fast
Fourier integral method for scattering, and image formation. We were able to produce high order scattering data,
but image formation was a bottle neck. There is still much work to be done in this direction. This work mostly
constituted a numerical experiment, and several assumptions were made. The point of this work was to examine
the use of high order terms to clear up images. At this point, our implementation was not optimized enough
to examine this problem effectively. This was the cause of most of the trouble in the experiment. The change
from continuous to discrete leaves open the possibility for round off error and such. This was an additional
cause of trouble in the experiment. A rigorous analysis of this method would help clear up much of this trouble.
The question of whether or not the method converges has not been answered. We were successful in producing
high order scattering in the frequency domain, and have some idea of when it is appropriate to use a truncated
Neumann series to approximate the scattering function. We would like to make explicit the relation between the
error in truncation the number of terms in sum, and the final error in image formation. We will expand on these
fronts in the future, though at least one author17 seems to have found a way around the Born approximation in
a compressive sensing setting.

APPENDIX A. CONVERGENCE OF THE NEUMANN SERIES

Suppose that we have a continuous linear operator L defined on a Hilbert space H, and we want to solve

usc = L{usc}+ uin (14)

or the equivalent
(I− L){usc} = uin (15)

for usc given uin. Similar to the geometric series, we have a solution in the form

usc = (I− L)−1uin =

∞∑
n=0

Lnuin. (16)

when the series converges. Such a series is called a Neumann series8 and is a model for multiple scattering
phenomena. A sufficient condition for convergence is ‖L‖ < 1, but this is not necessary. It has been shown
that the Neumann series (16) of a continuous linear operator L defined on a Hilbert space H converges if the
norm of Ln{uin} tends to 0.18 This is weaker than the previous condition. Our scattering operator can be seen
as a family of linear operators acting on our field space by fixing a reflectivity function. Since (7) is linear in
its second argument, it suffices to show boundedness to have continuity.19 This was already shown above if we
assume that the singularity can be taken care of and that any field and reflectivity functions are bounded. Let
V and F be subsets of L1

⋂
L2. That is, they are functions that are both integrable, and square integrable. This

means that the reflectivity, and field functions are bounded except possibly on sets that are negligible. If we
substitute y = x− z, and change to spherical coordinates, then the singularity goes away as long as x 6= y. The
weight of this point is negligible so the integral is bounded so that the operator is continuous. We showed above
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that each term in the scattering series is less than the previous if our targets are small enough, and our input
signal is sufficiently band limited. This means that the series should converge if we restrict our image and signal
space appropriately. Since it is required for the series to converge to make sense of the Born approximation,
and the Born approximation can be a reasonable estimate, we assume that our images and signals behave nice
enough for the Neumann series to converge.
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