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ABSTRACT

Multiple Input Multiple Output- MIMO Radar is a fast growing research area. This paper will give a brief
introduction to the subject as well as derive an image formation scheme. The general problem of radar imaging
is to use some physical model for a transmitted signal, and measurements of the signal that is scattered back to
a receiver by a scene to attempt to derive information about the scene. The concept of communication involves
a message sender, a message receiver, and a channel. The sender sends a message through the channel to the
receiver. The receiver attempts to recover the original message. MIMO communication is just communication
that involves sending several messages to several recipients. The problem of Multiple Input Multiple Output
Radar Imaging is to use the corruption of transmitted messages to try and derive useful information about the
environment that the messages traveled through. The extra information gained with MIMO Radar can be used
to get rid of false targets, detect moving targets, and create a better resolution image. The plan for this research
is to culminate to an in-scene 3-d Image reconstruction algorithm. The model presented provides a context in
which to examine this problem.

Keywords: MIMO RADAR, RADAR imaging, wave equation, discrete Fourier transform, Born approximation,
far field approximation, channel matrix, under determined linear systems

1. INTRODUCTION

MIMO RADAR systems utilize multiple transmit and receive antennas. This multiarray setup is advantagous
because it can improve target detection and parameter identifability. However MIMO radar is a relatively new
field with many open problems. As such, the field lends itself to mathematical study. This paper develops a
mathematical model for MIMO Radar, and uses it to work out an Image formation algorithm. In section two
we present the mathematical background necessary to derive the model. Section three uses the scalar wave
model to describe the propagation of EM(Electromagnetic) waves based on Maxwell’s equations.1,2 Section
four describes a MIMO configuration with isotropic(equally radiating in all directions) antennas.3 Section five
analyzes a channel matrix model relating the input and output signals.4 In the sixth section we discuss sampling.
In section seven we develop an image recovery algorithm. In section eight we present simulated data and test
our image recovery algorithm. The conclusion summarizes our findings and discusses possible further research.

2. BACKGROUND

2.1 Fourier Transform

For f : Rd → C, that is f maps a d-dimensional real vector to a complex number, let F denote the Fourier
transform5 of f defined as

F (ξ) =

∫
Rd

f(x)e−2πix·ξ dx. (1)
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Similarly, if u : R3×R→ C as (x, t) 7→ u(x, t) we define the temporal Fourier transform U(x, f) transforming
t→ f as

U(x, f) =

∫
R

u(x, t)e−2πitf dt.

We will refer to both the full transform and one variable transform as the Fourier transform when there is no
ambiguity. Henceforth, capital letters will denote Fourier transforms, i.e. F will denote the Fourier transform of
the function f . We abbreviate Fourier Transform as FT when necessary.

2.2 Discrete Fourier Transform

For a discrete function of d variables f : N1 × ... × Nd → C where Ni = {0, ...Mi − 1} define the Discrete
Fourier transform5 of f denoted F (k1, k2..., kd) as

F (k1, k2..., kd) =

M1−1∑
n1=0

...

Md−1∑
nd=0

f(n1, n2..., nd)e
−2πi(

k1n1
M1

+...+
kdnd
Md

)
. (2)

The Inverse Discrete Fourier Transform5 of F : K1 × ...×Kd is given by

f(n1, n2, ..., nd) =
1

M1M2...Md

M1−1∑
k1=0

...

Md−1∑
kd=0

F (k1, k2..., kd)e
2πi(

k1n1
M1

+...+
kdnd
Md

)
. (3)

We abbreviate the Discrete Fourier Transform and Inverse Discrete Fourier Transform as DFT, and IDFT
respectively.

2.3 Periodicity of DFT

Let F (k1, k2..., kd) denote the DFT of f : N1× ...×Nd → C. F is periodic in each of its arguments5 and satisfies

F (k1 +M1, k2 +M2..., kd +Md) = F (k1, k2..., kd). (4)

2.4 Realness Property of FT and DFT

Let f : Rd → R then the Fourier transform of f satisfies5

F (−ξ) = F (ξ) (5)

Similiarily if f : N1 × ...×Nd → R the DFT of f satisfies

F (−k1,−k2...,−kd) = F (k1, k2..., kd) (6)

These can be verified by simply dsitributing the conjugation to the integral or sum and factoring out the negative
in the exponent.

2.5 Dirac Delta Function

The Dirac delta function is the function that satsifies

δ(x) = {0, x 6= 0} (7)

and ∫
δ(z)dz = 1. (8)

This function is zero everywhere except for when its argument is zero. We use this fucntion to establish the
notion of a point isotropic object. It can be shown that for a smooth function f : Rd → C that∫

f(z)δ(z − x) dz = f(x). (9)
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2.6 Convolution

The convolution operator in space and time ∗
x,t

of f : Rd ×R→ C and g : Rd ×R→ C is given by

f(x, t)∗x,tg(x, t) =

∫
Rd

∫
R

f(x− z, t− τ)g(z, τ)dτ dz (10)

Similarily the convolution only in space ∗
x

is given by

f(x, t)∗
x
g(x, t) =

∫
Rd

f(x− z, t)g(z, t) dz. (11)

The Convolution Theorem relating convolution to multiplication when transforming in time is given by∫
R

f(x, t)∗
x,t
g(x, t)e−2πitf dt = F (x, f)∗

x
G(x, f) (12)

2.7 The Wave Equation

The wave equation for u : Rd ×R→ C in free space is given by(
∇2 − c−2

0 ∂2
t

)
u(x, t) = −j(x, t). (13)

The Greeen’s function g0(x, t) for (13) given by

g0(x, t) =
δ(t− |x|c0 )

4π|x|
(14)

can be used to solve (13) as

u(x, t) =

∫
R3

∫
R

g0(x− z, t− τ)j(z, τ)dτdz, (15)

2.8 The Far Field Approximation

Suppose we are given two points x, y ∈ Rd. We wish to approximate |x− y| and 1
|x−y| .

1 To do this we first note

that

|x− y| =
√

(x− y) · (x− y) =
√
|x|2 − 2x · y + |y|2 = |x|

√
1− 2

x̂ · y
|x|

+
|y|
|x|

2

(16)

If we use the binomial series we can find that for x� 1

√
1− x ≈ 1− x

2
(17)

and that
1√

1− x
≈ 1 +

x

2
. (18)

This means that if |x| � |y| then (16) becomes

|x− y| ≈ |x| − x̂ · y (19)

and
1

|x− y|
=

1

|x|
√

1− 2 x̂·y|x| + |y|
|x|

2
≈ 1

|x|
+
x̂ · y
|x|2

≈ 1

|x|
(20)
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3. SCALAR WAVE MODEL

We adopt the following wave equation model for the propagation of the scalar electromagnetic wave1,2 u(x, t)
for x ∈ R3 and t ∈ R with source j(x, t):(

∇2 − c−2(x)∂2
t

)
u(x, t) = −j(x, t). (21)

we adopt the principle that the total field at any position in space x and any time t is the superposition of
incident and scattered fields we write

u(x, t) = uin(x, t) + usc(x, t). (22)

The incident field is the field in the abscense of scatterers and satisfies(
∇2 − c−2

0 ∂2
t

)
uin(x, t) = −j(x, t). (23)

Define the continous reflectivity function vcontinous(x) as

vcontinous(x) =
1

c20
− 1

c2(x)
(24)

Our goal is to find some approximation of vcontinous(x) as it gives us an estimation of target distribution. In
this model we have ignored moving targets as vcontinous(x) does not depend on time. Under the weak scaterring
assumption (the Born approximation) uin ≈ u. By subtracting (21) from (23) we find that usc satisfies(

∇2 − c−2
0 ∂2

t

)
usc(x, t) ≈ −vcontinous(x)∂2

t uin(x, t). (25)

An approximation to the scattered field is then given by

usc(x, t) ≈ g0(x, t)∗
x,t
vcontinous(x)∂2

t uin(x, t). (26)

Applying the Fourier transform taking t to f , and lettting ω = 2πf , the transformed fields satisfy

(
∇2 + c−2(x)ω2

)
U(x, f) = −J(x, f) (27)

(
∇2 + c−2

0 ω2
)
Uin(x, f) = −J(x, f) (28)

where J is the Fourier transform of j. The Green’s function g0(x, t) becomes G0(x, f)

G0(x, f) =
e2πif |x|/c0

4π|x|
(29)

Using the convolution theorem (26) becomes

Usc(x, f) = −G0(x, f)∗
x
w2vcontinous(x)Uin(x, f) = −

∫
R3

e2πif |x−z|/c0

4π|x− z|
vcontinous(z)ω

2Uin(z, f) dz. (30)
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4. MIMO DATA MODEL

Henceforth we shall work in the transformed frequency domain, i.e. with f and ω rather than t. In a MIMO
RADAR system we have NT different transmitting antennas, and NR recieveing antennas. Each transmitter
generates a signal p`(t) which has Fourier Transform P`(f). Let x` and yj denote the positions in 3-d space of
the `th trasmmitter and jth receiver respectively. Adpoting a pointlike antenna model we can model the source
term J(x, f) as a super position of the individual transmitter signals located at their respective locations. That
is J(x, f) can be expressed as

J(x, f) =

NT∑
`=1

P`(f)δ(x− x`). (31)

We obtain the incident field by solving (28) as

Uin(x, f) =

NT∑
`=1

∫
R3

eiω|x−y|/c0

4π|x− y|
P`(f)δ(y − x`) dy (32)

so that

Uin(x, f) =

NT∑
`=1

P`(f)
eiω|x−x`|/c0

4π|x− x`|
. (33)

We can substitute (33) into (30) and solve for the scattered field measured at the jth receiver as

Usc(yj , f) = −
NT∑
`=1

ω2P`(f)

∫
R3

eiω(|yj−z|+|z−x`|)/c0

(4π)2|yj − z||z − x`|
vcontinous(z) dz. (34)

We define the receive vector R(f) as

R(f) =

 Usc(y1, f)
...

Usc(yNR
, f)

 . (35)

The receive vector contains all the data measured at the receivers for fixed frequency sample f .

5. CHANNEL MATRIX

5.1 Matrix Form

From (34), define the matrix H(f) ∈ CNR×NT with j, `th entry Hj,`(f)

Hj,`(f) = −
∫
R3

ω2 e
iω(|yj−z|+|z−x`|)/c0

(4π)2|yj − z||z − x`|
vcontinous(z) dz (36)

and the transmit vector P as

P =

 P1(f)
...

PNT
(f)

 . (37)

Then
R(f) = H(f)P (f). (38)

H describes the channel between each antenna receiver pair. Because of this we call H the channel matrix.
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5.2 Approximations

Assuming that |x`| � |z|, |yj | � |z| for all z ∈ supp(V ) we apply the far-field approximation to find

|x` − z| ≈ |x`| − x̂` · z (39)

|yj − z| ≈ |yj | − ŷj · z (40)

and that

1

|x` − z|
≈ 1

|x`|
(41)

1

|yj − z|
≈ 1

|yj |
. (42)

Substituting these into (36) we find that

Hj,`(f) ≈ −ω
2eiω(|yj |+|x`|)

(4π)2|yj ||x`|

∫
R3

e−iωz·(ŷj+x̂`)/c0vcontinous(z) dz (43)

so (43) becomes

Hj,`(f) ≈ −ω
2eiω(|yj |+|x`|)

(4π)2|yj ||x`|
Vcontinous

(
f

c0
(ŷj + x̂`)

)
(44)

where Vcontinous denotes the spatial Fourier transform of vcontinous. In the remainder of this paper we develop
and test an imaging scheme based on this relation.

6. SAMPLING

The point of the entire paper is to form an image approximating v. If we know H(f) for all f , then we
approximately know Vcontinous along the NTNR lines f

c0
(ŷj + x̂`) in the Fourier domain by the relation

Vcontinous

(
f

c0
(ŷj + x̂`)

)
≈ Hj,`(f)

(4π)2|yj ||x`|e−iω(|yj |+|x`|)

ω2
(45)

when f 6= 0.

The first step away from theory and towards proccessing is establishing a useful sampling scheme that relates
our sampled recieve vector to the sampled channel matrix and transmit vector. We collect samples of R(w) and
P (w) over the set of sampled frequencies {f1, . . . , fNS

}.
We define our sampled receive vector as

R =

 R(f1)
...

R(fNS
)

 . (46)

and our sampled transmit vector as

P =

 P (f1)
...

P (fNS
)

 . (47)

We then define our sampled channel matrix as

H =



H(f1) · · · (0) (0)
...

. . .

(0) H(fn) · · · (0)
...

...
. . .

(0) (0) H(fNS
)

 . (48)
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where (0) is the NR ×NT zero matrix. H is the NRNS ×NTNS matrix containing only zeros except the block
diagonal which is H sampled at different frequencies.

These definitions give rise to the equation
R = HP (49)

We must then estimate H. There are several methods for estimatting the channel depending on whether we have
prior information about the distribution of the measurment error or the channel itself. In this paper we do not
focus on estimating the channel matrix.

7. IMAGE FORMATION

Once we have estimated our sampled channel matrix we can move towards performing image recovery. For the
sake of simplicity we focus on recovering a 2-d image, although it extends easily to 3-d. We restict our scene to
consist of a finite number of point like scatterers that lie on a grid of M1 ×M2 points on the xy plane. The x1

and x2 spacing of the points are given by ∆x1 and ∆x2 respectively. Complicated targets can be approximated
by a sufficiently dense grid. vcontinous is then a function of just two variables x1 and x2. We denote the (n1, n2)th
position on the grid as (x1n1

, x2n2
). This point can be found explicitly as

(x1n1
, x2n2

) = (n1∆x1, n2∆x2). (50)

The discrete reflectivity function vdiscrete(n1, n2) is defined as

vdiscrete(n1, n2) = vcontinous(x1n1
, x2n2

). (51)

The fact that the scatteres lie on a grid means vcontinous must be of the form

vcontinous(x1, x2) =

M1−1∑
n1=0

M2−1∑
n2=0

vdiscrete(n1, n2)δ(x1 − x1n1
)δ(x2 − x2n2

). (52)

The 2-d FT of vcontinous then becomes

Vcontinous(ξ1, ξ2) =

M1−1∑
n1=0

M2−1∑
n2=0

vdiscrete(n1, n2)e−2πi(x1n1
ξ1+x2n2

ξ2). (53)

Substituting the explicit values in for x1n1
, and x2n2

we have

Vcontinous(ξ1, ξ2) =

M1−1∑
n1=0

M2−1∑
n2=0

vdiscrete(n1, n2)e−2πi(n1∆x1ξ1+n2∆x2ξ2). (54)

We define the discrete function Vdiscrete(m1,m2) as

Vdiscrete(m1,m2) = Vcontinous(
m1

M1∆x1
,

m2

M2∆x2
) =

M1−1∑
n1=0

M2−1∑
n2=0

vdiscrete(n1, n2)e−2πi(
n1m1
M1

+
n2m2
M2

). (55)

Vdiscrete is just the DFT of vdiscrete allowing us to simply use the IDFT to recover vdiscrete as

vdiscrete(n1, n2) =
1

M1M2

M1−1∑
m1=0

M2−1∑
m2=0

Vdiscrete(m1,m2)e2πi(
n1m1
M1

+
n2m2
M2

). (56)

If all of our scatters and antenna lie along the same line the equations reduce to

Vdiscrete(m1) = Vcontinous(
m1

M1∆x1
) =

M1−1∑
n1=0

vdiscrete(n1)e−2πi(
n1m1
M1

). (57)
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and

vdiscrete(n1) =
1

M1

M1−1∑
m1=0

Vdiscrete(m1)e2πi(
n1m1
M1

). (58)

We can just as well evaluate Vdiscrete at (m1 + k1M1) in 1-d and (m1 + k1M1,m2 + k2M2) in 2-d for integers
k1 and k2 due to the periodicity of the DFT. This allows us to choose the points in fourier space that best suit
the points our data can be used to estimate.

Our algorithm for image recovery can then be stated as follows:

1. Estimate sampled channel matrix.

2. Use the relation between the channel matrix and the FT of the reflectivity function to find Vcontinous at
several Points.

3. Use realness property of vcontinous to increase the number of points known of Vcontinous.

4. Interpolate the points of Vcontinous and estimate its values at ( m1

M1∆x1
, m2

M2∆x2
) to estimate Vdiscrete

5. Apply the 2-d IDFT to our estimate of Vdiscrete to recover vdiscrete

8. SIMULATION

Here we come to testing out the derived inversion scheme. We focus on recovering the image given the channel
matrix. Our simulation is restricted to the 1-d case. Scatterers are placed along a line and used to generate
several channel matrices according to (36).

First we place two scatterers at positions −100, and 100. They both have reflectivity −100. We test image
recovery for 10, 100, 1000, 10000, 100000, and 1000000 frequency samples. The recovered images are below.
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Figure 1. Imaging Two Point Scatterers

The distinction between two scatterers becomes much better as the number of frequency samples goes up.
Now we try ten scatterers at different locations with equal reflectivity and again work with 10, 100, 1000, 10000,
100000, and 1000000 frequency samples. The locations of the scatterers are −100, −60, −20, −50, −9, −5, 0, 9,
100, and 300. Our recovered images are shown below.
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Figure 2. Imaging Ten Point Scatterers

When the number of samples is 1000000 all ten of the scatterers begin to become visible.

9. CONCLUSION

In this paper we have developed an image recovery algorithm for a MIMO RADAR configuration based on a
wave equation model for the propagation of EM Waves. A convienient feature of this model is that it does not
require slowly varying signals. We tested our approximations by recovering scatterers in 1-d. There are two
major portions of image formation with this model. The first is estimating the channel matrix. The second is
using the estimated fourier data to reconstruct the image. There is still much work to be done with this model
such as estimating the channel matrix, finding optimal signals for image recovery, and moving towards a filtered
backprojection algorithm. Noise and clutter are further additions that can be made to this model. There are
two approximations we used in the derivation of this model. They are the Born approximation and the far field
approximation. Finding ways to get around these approximations is subject to future research.
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