Game: Hedging Edges
- The board is a planar graph
- The move is labeling an edge with a unit square label (one label per edge)
- Examples:

- Impartial game
 - Every position has a value

\[
\equiv \{_\} \equiv \{*0\} \equiv *1
\]
\[
\begin{align*}
\text{\textbullet} & \equiv \{ \text{\textbullet} \} \\
\text{\textbullet} & \equiv \{ \text{\textbullet} , \text{\textbullet} , \text{\textbullet} , \text{\textbullet} , \text{\textbullet} , \text{\textbullet} \} \\
\text{\textbullet} & \equiv \{ \text{\textbullet} , \text{\textbullet} , \text{\textbullet} \} \equiv *1 \\
\text{\textbullet} & \equiv \{ \} \equiv \{ *0 \} \equiv *1
\end{align*}
\]
Complexity
- Question:
 - Given a position in the Hedging Edges game, is it possible to label all the remaining edges?

Reduction: reduce form planar 3-SAT
- Variable Gadget

- Propagation gadget: move info from one part to the other
- Turning Gadget

- Clause Gadget

Figure 2: Encoding the clause of a Boolean formula; here \(\overline{x} \lor y \lor \overline{z} \)
Moving to QBF

What do we know?
$P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{NEXPTIME} \subseteq \text{EXPSPACE}$
$NPSPACE = \text{PSPACE}$
$P \not\subseteq \text{EXPTIME}$

QBF: Quantified Boolean Formula
- Basically just SAT as a game
- For Sat $\varphi(X_1, X_2, \ldots X_n) = (X_1 \lor \neg X_3 \lor X_4 \lor X_2) \land X_i$
 - NP, the certificate is a setting of variables (there exist a setting)
 - coNP (complement of NP), that no setting of the variables make φ true. For all settings

Alternation
- A non-deterministic computation accepts if any one of the branches accepts
- equivalent to an “or” function
- Alternating Computation
 - Nodes can be designated “or” or “and” when a split happens
- Nodes can be “and”
 - all end states must accept from split of “and” vertex
The Polynomial Hierarchy

- Alternating computation yields a natural hierarchy of classes within PSPACE
- Σ^i - i levels of alternation $\exists \forall \exists \forall ...$
- Π^i - i levels but starting with \forall: $\forall \exists \forall \exists ...$

- How do we show that something is PSPACE-complete?

PSPACE-Complete

1. Show \in PSPACE
2. Every A in PSPACE is polynomial time reducible to our problem
 Reduce PSPACE-complete problem to your problem
 Fully quantified - every variable appears with a quantifier.
 TQBF=\{<$\emptyset>$ | \emptyset is true fully quantified Boolean formula\}
 Thm. TBQF is PSPACE-Complete.

The Formula Game

- Artificial game based on TQBF.
- Given $\emptyset = \exists x_1 \forall x_2 \exists x_3 \forall x_4 \exists x_5 ... Q x_k[\Psi]$
 - Q is either \exists, or \forall.
 - Ψ is some boolean formula with $x_1...x_k$

- Player A selects x_1 is T/F
- Player B selects x_2 is T/F
- After all k variables are set:
 A wins if Ψ is true, B wins if Ψ is false.

- Ex.
 $\exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \lor (x_2 \lor x_3) \lor (x_2 \lor x_3)]$

 P1 wins if both play optimally.