Turing Machine: A computer with infinite memory. Can be deterministic and nondeterministic.
- Deterministic: A single path.
- Nondeterministic: All paths at the same time.

Ex.) Deterministic Turing Machine vs. Nondeterministic Turing Machine

Notice the T.M. on the left can only follow either path a or path b and the T.M. on the right takes all paths with one choice.

Complexity: Time complexity of an algorithm is the number of steps taken to decide based on the input.

Asymptotic Analysis: Highest term of a polynomial term that describes the running time based on the size of the input.

Notation:
- \(\mathbb{N} \) is the set of natural numbers. ex) 0,1,2,3,4... or 1,2,3,4,...
- \(\mathbb{R}^+ \) is the set of real positive numbers. ex) 0.5, 2, e, 3, \(\pi \), 4, 5,...
- \(\exists \) means “there exists”.
- \(\forall \) means “for all”.
- \(\epsilon \) means “an element of”.
- s.t. is the abbreviation for “such that”.

Def’n: Let \(f \) and \(g \) be functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \). We say that \(f(n) \in O(g(n)) \) if \(\exists \ c, \ n_0 > 0 \) s.t. \(0 \leq f(n) \leq c \cdot g(n) \ \forall \ n \geq n_0 \).
Ex.1) \(f(n) = 5n^3 + 2n^2 + 22n + 6 \)
Let \(c = 6 \) and \(n_0 = 10 \)
\(f(n) \leq 6n^3 \forall n \geq 10 \)
5,428 \leq 6,000

Ex.2) \(f(n) = 5n^3 + 2n^2 + 22n + 6 \leq 5n^3 + 2n^3 + 22n^3 + 6n^3 \)
\(f(n) = 35n^3 \)
\(f(n) = O(n^3) \) where \(c = 35 \) and \(n_0 = 1 \)

Little-o Notation:

Def’n: Let \(f \) and \(g \) be functions \(f, g \in \mathbb{N} \rightarrow \mathbb{R}^+ \). We say that \(f(n) \in o(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).

Ex.) \(f(n) = 3n^3 \)
\(g(n) = n^4 \)
\(\frac{f(n)}{g(n)} = \frac{3n^3}{n^4} = \frac{1}{n} \Rightarrow 0 \)

Def’n: Let \(t: \mathbb{N} \rightarrow \mathbb{R}^+ \) be a function. Define the time complexity class \(TIME(t(n)) \), to be the set of all languages decidable by a \(o(t(n)) \) time TM.

Decidable: a solution (yes/no) can always be found in a finite amount of time

Ex.1) for(int i = 0; i < n; i++)
{
 add += arr[i];
}

time complexity = \(O(n) \)

Ex.2) for(int i = 0; i < n; i++)
{
 for(int j = 0; j < n; j++)
 {
 add += arr[i];
 }
}

time complexity = \(O(n^2) \)
Polynomial Time: All reasonable deterministic models of computation can be found in a polynomial factor and are polynomially equivalent. This allows us to develop a theory and look at the complexity of problems not specific to a single model of computation.

Complexity Classes:
- P: Decision problems that can be solved on a DTM in polynomial time.
- NP: Decision problems that can be solved on a NTM in polynomial time.

The class P:

Def’n: P is the class of languages decidable in polynomial time on a deterministic single-tape TM.

\[P = \bigcup_k \text{TIME}(n^k) \]

Ex.) PATH = \{<G, s, t> : G is a directed graph with a path from s to t}

// insert graphic here
PATH \in \text{TIME}(n^2)
PATH \in \text{TIME}(\text{nlogn}) \in \text{TIME}(n^2) \in \ldots

P \in O(n) \subseteq O(n^2) \subseteq \ldots
P \in O \in (n^2)

The class NP:

Def’n: NTIME(t(n)) = \{L: L is a language decided by a \(O(t(n))\) time nondeterministic TM.\}

// insert graphic here, input dependent, worst case number of steps

NP = \bigcup_k \text{NTIME}(n^k)

*NP is the class of languages that have polynomial time verifiers.

Polynomial Time Verifier:

Def’n: A verifier for a language \(A\) is an algorithm \(V\) where \(A = \{w: V\text{ accepts }<w, c>\text{ for some string }c\}\). \(c\) is the certificate.

Hamiltonian Path:

\[\text{HP} = \{<G, s, t> \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t\} \]
Path = <s, b, f, e, c, d, g, t>

1. Does this visit all the nodes? // O(n)
2. Does this form a valid path? // O(n^2)
3. Does the path start at s and end at t? // O(1)

Polynomial and nondeterministic are equivalent.

P ⊆ NP

Verifying answer is equivalent to \(U_k\ NTIME(n^k) \).