REGULAR$_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \quad (S219)$

Thm. REGULAR$_{TM}$ is undecidable

- Create M_2 = “On input x:
 1. If x has the form 0^n1^n (Not Regular) accept
 2. If x does not have this form, run M on w and accept if M accepts.”

- If M does not accept w, M_2 only accepts a non-regular language
- If M does accept w, M_2 accepts anything \sum^*
 $\quad \sum^*$ is a regular language

Proof: Let R be decidable for REGULAR$_{TM}$. Construct S to decide A_{TM}

- S = “On input $<M, w>$:
 1. Construct the TM as described
 2. Run R on input $<M_2>$
 3. If R accepts, accept; If R rejects, reject”

(Never run anything on M_2. Just construct description to feed to R)

Therefore, REGULAR$_{TM}$ is undecidable

Computation Histories (S221)

- Definition: An accepting computation history for TM M on string w is a sequence of configurations C_1, C_2, \ldots, C_L where C_1 is the start configuration and C_L is an accepting configuration of M and each C_i legally follows C_{i-1}.
- A rejecting computation history $\rightarrow C_L$ is a rejecting configuration

Linear Bounded Automata: A TM where the tape head is not permitted to move off the portion of the tape containing input.

Deciders for A_{DFA}, A_{CFG}, E_{DFA}, E_{CFG}, every CFL decided by LBA

- Lemma (S222)
 - Let M be an LBA with q states and g symbols in the alphabet
 - $|Q| = q$ and $|\Gamma| = g$. There are exactly $q^n g^n$ (q^n states and g^n memory) distinct configurations of M for a tape of length n
\(A_{LBA} = \{ <M, w> \mid M \text{ is an LBA that accepts } w \} \)

Thm. \(A_{LBA} \) is decidable

Proof Idea:

Simulate \(M \) on \(w \)

Accept if \(M \) accepts

Reject if \(M \) rejects or loops

\(E_{LBA} = \{ <M> \mid M \text{ is an LBA and } L(M) = \emptyset \} \)

Thm. \(E_{LBA} \) is undecidable

Reduce from \(A_{TM} \)

Create an LBA s.t \(L(B) \) are accepting computation histories for \(M \) on \(w \)

Input is computation history separated by #

- Construct it to act as an emulator for \(M \) on \(w \) checking history
- \(C_1#C_2\ldots#C_3 \)
 - \(C_1 \) is a valid start configuration
 - Each \(C_{i+1} \) legally follows \(C_i \)
 - \(C_1 \) is an accepting configuration

Decider for \(A_{TM} \) – Let \(R \) be a TM that decides \(E_{LBA} \)

- \(S = \text{“On input } w: \)
 1. Construct LBA \(B \) from \(M, w \)
 2. Run \(R \) on input \(\)
 3. If \(R \) rejects, accept; If \(R \) accepts, reject

If \(R \) accepts \(\), then \(L(B) = \emptyset \). Thus, \(M \) has no accepting computation history on \(w \) and \(M \) does not accept \(w \). Consequently, \(S \) rejects \(<M, w> \). Similarly, if \(R \) rejects \(\), the language of \(B \) is nonempty. The only string that \(B \) can accept is an accepting computation history for \(M \) on \(w \). Thus, \(M \) must accept \(w \). Consequently, \(S \) accepts \(<M, w> \). Figure 5.12 illustrates LBA \(B \)

\[\text{Figure 5.12} \]

LBA \(B \) checking a TM computation history
Homework Problem

- Post Correspondence Problem
- PCP

Use dominoes (allowing repetition) to create matching strings on top/bottom

Ex.

\[
\left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}.
\]

Top and bottom are both matching

PCP is undecidable

Thm. \(EQ_{TM} \) is neither recognizable nor Co-Turing recognizable