CSCI 4325
Assignment 7 (100 points)

The homework is to be turned in by 5 P.M. on the day it is due. Style and correctness will be graded – be neat and thoroughly explain each step. Anything that is not clear will be counted wrong.

Problem 1 (20): Given a string \(w \in \{0, 1\}^* \), \(w^R \) is its reversal. Let \(T = \{<M> | M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\} \). Show that \(T \) is undecidable. (You can not use Rice’s Theorem before proving it)

Problem 2 (20): In the following instance of the Post Correspondence Problem, is there a match? Describe your approach to the problem. Knowing that the problem is undecidable, try to explain where your approach might fail.

\[
\begin{align*}
\begin{bmatrix} b \\ ab \end{bmatrix}, & \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} aba \\ ba \end{bmatrix}, \begin{bmatrix} aba \\ a \end{bmatrix}
\end{align*}
\]

Problem 3 (20): Prove that \(EQ_{CFG} = \{<G_1, G_2> | G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2)\} \) is undecidable.

Problem 4 (20): Let RELPRIME = \(\{<x, y> | x \text{ and } y \text{ are positive integers that are relatively prime}\} \). Given the following algorithm to test if two positive integers are relatively prime, let \(n \) be the maximum number of decimal digits in \(x \) and \(y \). Analyze the running time of this algorithm, using \(O \)-notation. Explain the details and give your reasoning for each step.

On input \(<x, y> \) where \(x \) and \(y \) are positive integers.
1. Repeat until \(y = 0 \):
2. Assign \(x \leftarrow x \mod y \).
3. Swap \(x \) and \(y \).
4. Output \(x \). If the result is 1, accept; otherwise reject.

Problem 5 (20): Let \(S_1 \) be a countable set and \(S_2 \) be an uncountable set with \(S_1 \subseteq S_2 \). Prove that \(S_2 - S_1 \) is uncountable.

Bonus (12): Tetrominos are four squares stuck together along an edge (Tetris pieces). There are five distinct tetromino types: the straight, square, L-shaped, T-shaped, and Z-shaped tetromino. Is it possible to tile (i.e., cover exactly without overlaps) an 8 \times 8 chessboard with the following? If possible, give the tiling. If not, explain why.

(a) 16 straight tetrominoes
(b) 16 square tetrominoes
(c) 16 L-tetrominoes
(d) 16 T-tetrominoes
(e) 16 Z-tetrominoes
(f) 15 T-tetrominoes and one square tetromino