CSCI 4325
Assignment 6 (100 points)

The homework is to be turned in by 5 P.M. on the day it is due. Style and correctness will be graded – be neat and thoroughly explain each step. Anything that is not clear will be counted wrong.

Problem 1 (20): For this problem use the TM M_1, which appears in Example 3.9 on page 173. For each part, give the sequence of configurations that M_1 enters when started on the input string ending with a reject or accept.

(a) 0#0
(b) 1##1
(c) 10#11
(d) 10#10

Problem 2 (20): Give a state transition diagram for the Turing Machine M_3 specified in Example 3.11 which decides the language $C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \geq 1\}$.

Problem 3 (25): Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet $\Sigma = \{a, b\}$.

(a) $\{w \mid w \text{ contains twice as many } a \text{'s as } b \text{'s}\}$
(b) $\{w \mid w \text{ does not contain twice as many } a \text{'s as } b \text{'s}\}$

Problem 4 (20): Which of the following problems about Turing machines are solvable, and which are undecidable? Explain your answers carefully.

(a) To determine, given a Turing machine M, a state q, and a string w, whether M ever reaches state q when started with input w from its initial state.
(b) To determine, given a Turing machine M and a symbol a, whether M ever writes the symbol a when started with the empty tape.

Problem 5 (15): Assume that A is reducible to B and B is reducible to C. Show that A is reducible to C.

Bonus (2): Favorite cult classic movie?