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Abstract. Properties of theta functions and Eisenstein series dating
to Jacobi and Ramanujan are used to deduce differential equations asso-
ciated with McKay Thompson series of level 20. These equations induce
expansions for modular forms of level 20 in terms of modular functions.
The theory of singular values is applied to derive expansions for 1/π of
signature 20 analogous to those formulated by Ramanujan.

1. Introduction

Let |q| < 1 and define the three null theta functions by

θ3(q) =
∞∑

n=−∞
qn

2
, θ4(q) =

∞∑
n=−∞

(−1)nqn
2
, θ2(q) =

∞∑
n=−∞

q(n+1/2)2
.

(1.1)

In the Nineteenth Century, Jacobi proved that each ϑ = θi(q) satisfies a
third order differential equation [8] and that the triple of null theta functions
satisfies a quartic relation

θ4
3(q) = θ4

4(q) + θ4
2(q).(1.2)

Jacobi referred to (1.2) as an “aequatio identica satis abstrusa” [7, p. 147].
Ramanujan proved an equivalent coupled system of differential equations for
Eisenstein series on the full modular group. This system and Ramanujan’s
parameterizations for Eisenstein series in terms of theta functions will be
used to formulate a coupled system for level 2 modular forms

q
d

dq
θ4
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1

3

(
θ8

2 − θ8
4 + θ4

3P2

)
, q

d

dq
θ4

4 =
1

3

(
θ8

2 − θ8
3 + θ4

4P2

)
,(1.3)

q
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θ4
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1

3

(
θ8

3 − θ8
4 + θ4

2P2

)
, q

d

dq
P2 =

2P 2
2 − θ8

2 − θ8
3 − θ8

4

12
,(1.4)

where Pn = P (qn) is defined in terms of the weight two Eisenstein series

P (q) = 1− 24
∞∑
j=1

jqj

1− qj
.

We apply (1.3)–(1.4) to obtain a third order differential equation for θ4
3 with

rational coefficients in the level 4 modular function θ4
2θ

4
4/θ

8
3. From these

identities and (1.2), we derive a third order differential equation for modular
forms with coefficients in the field of rational functions generated by McKay
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Thompson series of level 20. The theory of singular values is then used to
construct new Ramanujan-Sato expansions for 1/π.

The McKay-Thompson series for the subgroups Γ that will be relevant
here are given in terms of the Dedekind eta-function, defined for q = e2πiτ

and τ ∈ H by η(τ) = q1/24
∏∞
j=1(1− qj) with η` = η(`τ). These are [4]

u =

(
η1η20

η4η5

)2

, v =

(
η2η5η20

η1η4η10

)2

(1.5)

k =

(
η4η20

η2η10

)2

, w =

(
η2η20

η4η10

)3

.(1.6)

In the following table, we list the appropriate group and Hauptmodul
using the notation of [4] for Γ0(20) extended by the indicated Atkin-Lehner
involutions. The function tΓ represents the normalized Hauptmodul for Γ.

Γ tΓ

20+ 1
u − 2 + u

20|2+ 1
w − w

20+4 1
v + 2

20|2+5 1
k

20|2+10 1
w

20+20 1
u − 2

As in the lower level analogues, weight two forms that appear in our
analysis are theta functions corresponding to binary quadratic forms. The
class number h(−20) = 2, and the corresponding inequivalent forms are

Z =

( ∞∑
m=−∞

∞∑
n=−∞

qm
2+5n2

)2

, Z =

( ∞∑
m=−∞

∞∑
n=−∞

q2m2+2mn+3n2

)2

.

Although we focus on differential equations satisfied by Z, sister equations
for Z may be derived using a similar construction to that appearing here.

We require the notion of an eta-product, a function of the form

(1.7) f(τ) =
∏
δ|`

(η(δτ))rδ

where ` is a positive integer, the product is taken over the positive divisors
of `, and the rδ are integers. LetMk(Γ0(`)) be the space of modular forms of
weight k with trivial multiplier system for the modular subgroup Γ0(`); see,
e.g., [10, Chapter 1] for the definitions. When k is an even integer there is a
simple test that can be used to determine if an eta-product is in Mk(Γ0(`)):
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Lemma 1.1. Let ` be a positive integer and consider the eta-product f(τ)
defined by (1.7). Let

k =
1

2

∑
δ|`

rδ and s =
∏
δ|`

δ|rδ|.

Suppose that
(1) k is an even integer;
(2) s is the square of an integer;
(3)

∑
δ|`

δ rδ ≡ 0 (mod 24);

(4)
∑
δ|`

`

δ
rδ ≡ 0 (mod 24);

(5)
∑
δ|`

gcd(d, δ)2 rδ
δ
≥ 0 for all d|`.

Then f ∈Mk(Γ0(`)).

Proof. This is immediate from [10, Thms. 1.64, 1.65]. The main ideas of the
proof are given in [6, Theorem 1]. �

We will need the following result about Eisenstein series of weight 2.

Lemma 1.2. Define P` = P (q`). For any positive integer ` ≥ 2,

`P` − P1 ∈M2(Γ0(`)).

Proof. See [12, pp. 177–178]. �

The collection of results in the next theorem will be necessary to develop
spanning sets for the spaces of modular forms in the remainder of the paper.

Theorem 1.3. The dimension of the space of modular forms of weight 2 for
the modular subgroup Γ0(20) is given by

(1.8) dimM2(Γ0(20)) = 6.

If c1, c2, c4, c5, c10 and c20 are any constants that satisfy

20c1 + 10c2 + 5c4 + 4c5 + 2c10 + c20 = 0,

then

(1.9) c1P1 + c2P2 + c4P4 + c5P5 + c10P10 + c20P20 ∈M2(Γ0(20)).

Furthermore,

(1.10) z, zu, zu−1, zv, zv−1 ∈M2(Γ0(20)).

Proof. The dimension formula (1.8) follows from [13, Prop. 6.1]. The result
(1.9) follows from Lemma 1.2 and the trivial property that

Mk(Γ0(`)) ⊆Mk(Γ0(m)) if `|m.
The results in (1.10) are immediate consequences of Lemma 1.1. �



4 TIM HUBER, DAN SCHULTZ AND DONGXI YE

2. Spanning Sets

In this section, we develop bases for weight two and four forms for Γ0(20).
It is well-known, e.g., [13, p. 83], that

(2.1) Mk(Γ0(`)) = Ek(Γ0(`))⊕ Sk(Γ0(`))

where Ek(Γ0(`)) and Sk(Γ0(`)) are the subspaces of Eisenstein series and
cusp forms, respectively, of weight k for Γ0(`). From the dimension formulas
in [13, p. 93] we find dimE2(Γ0(20)) = 5 and dimS2(Γ0(20)) = 1. In fact,

E2(Γ0(20)) = spanC

{
2P (q2)− P (q), 4P (q4)− P (q), 5P (q5)− P (q),

10P (q10)− P (q), 20P (q20)− P (q)

}(2.2)

=

{
c1P1 + c2P2 + c4P4 + c5P5

+c10P10 + c20P20

∣∣∣∣ 20c1 + 10c2 + 5c4 + 4c5

+2c10 + c20 = 0

}
and [5]

(2.3) S2(Γ0(20)) = Cz, where z = η2
2η

2
10.

Therefore,
(2.4)

M2(Γ0(20)) = spanC

{
2P (q2)− P (q), 4P (q4)− P (q), 5P (q5)− P (q),

10P (q10)− P (q), 20P (q20)− P (q), z

}
.

Similarly, we compute an explicit basis for M4(Γ0(20)):
(2.5)

M4(Γ0(20)) = spanC

{
Q(q), Q(q2), Q(q4), Q(q5), Q(q10), Q(q20), z2,

z2

u , z
2v, z2k2, z2kw

}
.

The above construction can be applied to give a representation for each
of zu, zu−1, zv and zv−1 as the sum of Eisenstein series and a cusp form.

Theorem 2.1. Let z be defined by (2.3). Then

zu =
1

72
(P1 − 6P2 + 20P4 − 25P5 + 30P10 − 20P20) +

1

3
z,(2.6)

z

u
=

1

72
(−5P1 + 6P2 − 4P4 + 5P5 − 30P10 + 100P20) +

1

3
z,(2.7)

zv =
1

72
(−P1 + 4P4 + P5 − 4P20)− 1

3
z,(2.8)

z

v
=

1

72
(P1 − 4P4 − 25P5 + 100P20)− 5

3
z.(2.9)

Proof. These are immediate from (1.10) and (2.4). �

These relations induce identities between the level 20 haptmoduln.

Theorem 2.2. Let u, v be defined by (1.5). Then the following identity
holds.

(2.10)
1

u
+ u =

1

v
+ 4 + 5v.
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Proof. By (1.8) and (1.10) we have that z, zu, zu−1, zv, zv−1 are linearly
dependent; in fact, from Theorem 2.1 we have

4z + 5zv +
z

v
− zu− z

u
= 0.

The claimed identity may be obtained by dividing both sides by z. �

The preceding proof is a prototype for the derivation of a plethora of
relations between the other Hauptmoduln of level 20. For our purposes, we
next derive theta quotient representations for certain linear functions in v.

Theorem 2.3.

1 + v =
η8

10

η1η4η3
5η

3
20

, 1 + 5v =
η10

2 η5η20

η5
1η

5
4η

2
10

.(2.11)

Proof. By the definition (2.3) of z and Lemma 1.1, we can check that

z
η8

10

η1η4η3
5η

3
20

=
η2

2η
10
10

η3
20η

3
5η4η1

∈M2(Γ0(20)).

By (2.4), it can be shown that

z
η8

10

η1η4η3
5η

3
20

= − 1

72
P (q) +

1

18
P (q4) +

1

72
P (q5)− 1

18
P (q20) +

2

3
z.

In addition, by Theorem 2.1, we find that

z + zv = − 1

72
P (q) +

1

18
P (q4) +

1

72
P (q5)− 1

18
P (q20) +

2

3
z.

Therefore,

z + zv = z
η8

10

η1η4η3
5η

3
20

,

and dividing both sides by z gives the first identity of (2.11). The second
identity can be deduced in a similar way. We omit the details. �

3. Differential Equations

In this section, we prove the differential system (1.3)–(1.4) and deduce
third order differential equations from the computations in the prior section.

Theorem 3.1. The differential sytem (1.3)–(1.4) holds.

Proof. Ramanujan’s parameterization [1, Equation 5.4.5]

P (q2) = (1− 2x)θ4
3 + 6x(1− x)

dθ2
3

dx
, x =

θ4
2

θ4
3

(3.1)

coupled with Jacobi’s relation (1.2) and [1]

q
dx

dq
= θ4

3x(1− x)(3.2)
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together imply the claimed expression for qdθ4
3/dq. The differential equation

for θ4
4 follows from that of θ4

3 since the map q 7→ −q fixes θ2, P2 and inter-
changes θ3 and θ4. We derive the differential equation for θ4

2 directly from
those for θ4

3, θ
4
4 and Jacobi’s relation (1.2). The expression for qdP2/dq is

equivalent to Ramanujan’s differential equation for the Eisenstein series of
weight two on the full modular group.

q
dP

dq
=
P 2 −Q

12
, Q(q2) = 1 + 240

∞∑
n=1

n3q2n

1− q2n
=
θ8

2 + θ8
3 + θ8

4

2
.(3.3)

Ramanujan derived the parameterization for Q(q2) [1, Equation 5.4.8]. �

Theorem 3.2. Let X be defined by

X =
z

Z
.

Then

X =
u

(1 + u)2
=

v

(1 + v)(1 + 5v)
.(3.4)

Proof. Since Z ∈M2(Γ0(20)), then by (2.4), it is easy to show that

Z = − 1

18
P (q) +

2

9
P (q4)− 5

18
P (q5) +

10

9
P (q20) +

8

3
z.

By Theorem 2.1, it follows that

zu+
z

u
+ 2z =

η24
1 η

24
4

η48
2

.

Therefore

Z = zu+
z

u
+ 2z = z

(1 + u)2

u
,

which implies the first equality of (3.4). The second equality follows from
Theorem 2.2. �

Theorem 3.3.

q
d

dq
log u =

z

u

√
1− 8u− 2u2 − 8u3 + u4,(3.5)

q
d

dq
logX = Z

√
(1− 4X)(1− 12X + 16X2).(3.6)

Proof. It is easy to verify that

q
d

dq
log u =

1

12
P (q)− 1

3
P (q4)− 5

12
P (q5) +

5

3
P (q20).

By Theorem 2.1, we have

q
d

dq
log u = −5zv +

z

v
.
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Then together with Theorem 2.2, the above identity implies (3.5). By The-
orem 3.2, we have

X =
u

(1 + u)2
and Z = z

(1 + u)2

u
.

The differentiation formula (3.6) follows from (3.5) via changes of variables.
�

Theorem 3.4.

X2(1−4X)(1− 12X + 16X2)
d3Z

dX3
+ 3X(1− 24X + 128X2 − 160X3)

d2Z

dX2

+ (1− 56X + 464X2 − 784X3)
dZ

dX
− 4(1− 20X + 54X2)Z = 0.(3.7)

Proof. Let F and T be defined by

F = θ4
3 and T =

t

(1 + 16t)2
=
θ4

2θ
4
4

16θ8
3

.

From the differential system (1.3)–(1.4) and Jacobi’s quartic identity,

q
dT

dq
=
θ4

3

16

θ4
2θ

4
4

θ8
3

(
1− 2

θ4
2

θ4
3

)
=
θ4

2θ
4
4

16θ4
3

(
1− 2

θ4
2

θ4
3

)
.(3.8)

By the chain rule,

dF

dT
=
dF

dq

/
dT

dq
=

16θ8
3

(
θ8

2 − θ8
4 − θ4

3P2

)
3θ4

2θ
4
4(θ4

3 − 2θ4
2)

.(3.9)

Likewise, d2F/dT 2, d3F/dT 3 may be expressed by way of the chain rule
as rational functions of θ4

2, θ
4
3, θ

4
4, P2. By applying Jacobi’s quartic identity

(1.2), we derive

(3.10) T 2(1− 64T )
d3F

dT 3
+ 3T (1− 96T )

d2F

dT 2
+ (1− 208T )

dF

dT
= 8F.

Theorem 2.1 and the Jacobi triple product identity [1] for the theta functions
imply

F = z
(1 + 5v)2

v
and T =

v

(1 + v)(1 + 5v)5
.

Making use of these changes of variables and chain rule, the differential
equation (3.10) implies that z satisfies a third order differential equation with
respect to v. This implies (3.7) by the change of variables from Theorem 3.2

Z = z
(1 + v)(1 + 5v)

v
and X =

v

(1 + v)(1 + 5v)
.

�

Writing ZX = X d
dX , the last theorem takes a more compact form.
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Theorem 3.5.

4x
(
54x2 − 20x+ 1

)
Z + 16x

(
27x2 − 13x+ 1

)
ZX + 24x(2x− 1)(6x− 1)ZXX

+ (4x− 1)
(
16x2 − 12x+ 1

)
ZXXX = 0.

Theorem 3.5 induces a power series expansion for Z in terms of X.

Corollary 3.6. For |X| < 1
8

(
3−
√

5
)
,

Z =
∞∑
n=0

anX
n,

where a0 = 1, a1 = 4, a2 = 20 and

an+1 = 4
(2n+ 1)

(
2n2 + 2n+ 1

)
(n+ 1)3

an − 16
n
(
4n2 + 1

)
(n+ 1)3

an−1 + 8
(2n− 1)3

(n+ 1)3
an−2.

4. Singular Values and Ramanujan-Sato Series of Level 20

In this section, we given an abbreviated proof of the expansions for 1/π
resulting from the the differential equations for Z and singular values for
the modular function X(τ). Well known results from the theory of singular
values and properties of the j-invariant are used. Most of the results needed
may be found in [3, 4, 9]

For any natural number N and e||N , consider the set of Atkin-Lehner
involutions

We =

{(
ea b
Nc ed

) ∣∣∣ (a, b, c, d) ∈ Z4

ead− N
e bc = 1

}
.

Each We is a coset of Γ0(N) with the multiplication rule

WeWf ≡Wef/ gcd(e,f)2 mod Γ0(N).

For any set of indices e closed under this rule, the group Γ = ∪eWe is a
subgroup of the normalizer in PSL(2,R) of Γ0(N). Such a group is denoted
as Γ0(N)+we1 , we2 · · · , or more succinctly asN+e1, e2, · · · . This is shortened
to N+ when all of the indices are present. For each such Γ of genus 0, let
tΓ(τ) be its normalized Hauptmodul

tΓ(τ) =
1

q
+

∞∑
n=1

anq
n.

The modular function X(τ) defined in Theorem 3.2 is the normalized
Hauptmodul for Γ0(20)+ and is therefore invariant under action by any
element of Γ0(20)+. To find explicit evaluations for X(τ) in the upper half
plane H, we construct modular equations of level 20 and degree n ≥ 2.
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Definition 4.1. Let tΓ be a normalized Hauptmodul for Γ and suppose that
gcd(n,N) = 1. Then the modular equation for tΓ is

ΨtΓ
n (Y ) =

∏
αδ=n
0≤β<δ

(α,β,δ)=1

(
Y − tΓ

(
ατ + β

δ

))
.(4.1)

The modular equations may be expressed as a polynomials with integer
coefficients in the parameter Y and tΓ [3, Proposition 2.5].

Theorem 4.2. For each normalized Hauptmodul tΓ and gcd(n,N) = 1,

ΨtΓ
n (Y ) ∈ Z[tΓ, Y ].

For each τ in Table 3, we demonstrate that X(τ) is a root of a modular
equation ΨX

n (X) for some n relatively prime to 20.

Theorem 4.3. For n ≥ 2 with gcd(n, 20) = 1, and for each τ ∈ H defined
in Table 3, we have ΨX

n (X) = 0, where X = X(τ).

Proof. To show each τ in Table 3 satisfies ΨX
n (X) = 0, where X = X(τ),

we determine an integer n and pairwise relatively prime integers α, β, δ such
that αδ = n and 0 ≤ β < δ with (ατ+β)/δ equal to the image of τ under an
Atkin-Lehner involution from We for some e || 20. Since X(τ) is invariant
under each Atkin-Lehner involution, we see that X(τ)−X((ατ +β)/δ) = 0,
so X = X(τ) satisfies ΨX

n (X) = 0. �

To evaluate X(τ) for each quadratic irrational τ listed in Table 3, a suf-
ficiently accurate approximation of X(τ) may be used to distinguish the
corresponding root of ΨX

n (X) and to evaluate X(τ). We illustrate the tech-
nique for deriving expansions for 1/π in the next example. The procedure
relies on computing modular equations as in [2].

Let τ0 = τ(20,−40, 23) = 1
10

(
10 + i

√
15
)
. Then

τ0 + 2

3
=

20τ0 − 21

20τ0 − 20
(4.2)

Hence, with (a, b, c, d) = (1,−21, 1,−1) and e = N = 20, we have M:=(
ea b
Nc ed

)
=

(
20 −21
20 −20

)
∈W20.(4.3)

Therefore,

X

(
τ0 + 2

3

)
= X(τ0),(4.4)

and so X = X(τ) is a root of the modular equation

Ψ3(X,Y ) = X4 − 256X3Y 3 + 192X3Y 2 − 30X3Y + 192X2Y 3 − 93X2Y 2

+ 12X2Y − 30XY 3 + 12XY 2 −XY + Y 4 = 0.(4.5)
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Hence, X(τ) is a root of

Ψ3(X,X) = −X2(X − 1)(16X − 1)
(
16X2 − 7X + 1

)
= 0.

By numerically approximating X(τ) and applying (4.5), we deduce (4.5),

X(τ0) = 1/16,
dY

dX
= −1,

d2Y

dX2

∣∣∣∣
τ=τ0

= −32

3
.(4.6)

Moreover, we may apply (4.5) to expand Y about X(τ0)

X(Mτ) =

∞∑
k=0

Y (k)(X(τ0))
(X(τ)−X(τ0))k

k!
, Y (k) =

dY k

dXk
.(4.7)

By applying 1
2πi

d
dτ twice to both sides of (4.7) and applying (3.6),

20i

πW
(
1− dY

dX

)
(20τ − 20)

∣∣∣∣
τ=τ0

(4.8)

=

(
X
dZ

dX
+

(
1 +

X

W

dW

dX
+X

d2Y
dX2

dY
dX

(
1− dY

dX

))Z)∣∣∣∣
τ=τ0

,

where

W := W (X) :=
√

(1− 4X)(1− 12X + 16X2).(4.9)

By (4.6), (4.8), and the fact that Z =
∑∞

n=0AnX
n, we obtain

1

π
=

3

8

∞∑
n=0

An
16n

(
n+

1

6

)
.(4.10)

Similarly, for each τ0 such that X(τ0) lies in the radius of convergence for
Theorem 3.7, we use the modular equation to deduce the series expansions
for π. The matrix M under which X is invariant, and other parameters
for each modular equation appear in Table 3. 3.7. We restrict ourselves to
singular values of degree no more than 2 over Q.

In order to formulate a complete list of algebraic τ such that X(τ) has
algebraic degree two over Q, e use well known facts about the j invariant
[11]. First, for algebraic τ , the only algebraic values of j(τ) occur at Im τ > 0
satisfying aτ2 + bτ + c = 0 for a, b, c ∈ Z, with d = b2 − 4ac < 0. Moreover,

[Q(j(τ)) : Q] = h(d),

where h(d) is the class number. Since there is a polynomial relation P (X, j)
between X and j of degree 2 [3, Remark 1.5.3], we have

[Q(j(τ)) : Q] ≤ 2[Q(X(τ)) : Q],

and so values τ with [Q(X(τ)) : Q] ≤ 2 satisfy

[Q(j(τ)) : Q] = h(d) ≤ 4.

Therefore, the bound |d| ≤ 1555 for h(d) ≤ 4 from [14] implies that Algo-
rithm 4.1 gives a complete list of algebraic (τ,X(τ)) with [Q(X(τ)) : Q] ≤ 2:



LEVEL 20 11

b2 − 4ac τ(a, b, c) X(τ)

−16 (4,−8, 5) 1
8(7− 3

√
5)[

−40
−160

] [
(10,−20,11)
(40,−80,41)

]
−3/2 +

√
5/2

−240 (20,−40, 23) 1/16

−256 (20,−12, 5) i/8
√

2

−256 (20,−28, 13) −i/8
√

2

−320 (20,−20, 9) 1
16(1−

√
5)

−400 (100,−200, 101) 1
8(7− 3

√
5)

−480 (20,−20, 11) 1
8(−7 + 3

√
5)

−640 (20,−20, 13) 1
8(3−

√
10)

−880 (20,−40, 31) 1
32(7− 3

√
5)

−960 (20,−20, 17) 1
16(−4 +

√
15)

−1120 (20,−20, 19) 1
8(−47 + 21

√
5)

−1360 (20,−40, 37) 1/18
√

85 + 166

−2080 (20, 20, 31) −161/4 + 18
√

5

−3040 (20, 20, 43) −721/4 + 57
√

10

Table 2. Complete list of quadratic singular values of X(τ)
within the radius of convergence of Theorem 3.7.

Algorithm 4.1. For each discriminant −1555 ≤ d ≤ −1,
(1) List all primitive reduced τ = τ(a, b, c) of discriminant d in a fun-

damental domain for PSL2(Z). Translate these values via a set of
coset representatives for Γ0(20) to a fundamental domain for Γ0(20).

(2) Factor the resultant of P (X,Y ) and the class polynomial

Hd(Y ) =
∏

(a,b,c) reduced, primitive
d=b2−4ac

(
Y − j

(−b+
√
d

2a

))
.

Linear and quadratic factors of the resultant correspond to a complete
list of X(τ), for τ of discriminant d, such that [Q(X(τ)) : Q] ≤ 2.

(3) Associate candidate values τ from Step 1 to X by approximating
X(τ). For each approximation, prove the evaluation X = X(τ) by
deriving a corresponding modular equation for which X(τ) are roots.
The proof of each evaluation may be accomplished through a rigorous
derivation of the first decimal digits of X(τ) and a comparison of
these values with those of the roots of the modular equation.

Algorithm 4.1 was implemented in Mathematica resulting in Table 4.
In the final two tables, we list constants defining level 20 expansions

1

π
= A

∞∑
n=0

an(n+B)Cn.(4.11)
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τ(a, b, c) n e (α, β; 0, δ) γ ∈We

(4,−8, 5) 29 4 (1, 5; 0, 29) (4,−5; 20,−24)
(10,−20, 11) 13 5 (1, 9; 0, 13) (5,−5; 20,−30)
(40,−80, 41) 13 5 (1, 4; 0, 13) (15,−17; 40,−45)
(20,−40, 23) 3 20 (1, 2; 0, 3) (20,−21, 20,−20)
(20,−12, 5) 17 4 (1, 10, 0, 17) (12,−5; 20,−8)
(20,−28, 13) 17 4 (1, 13; 0, 17) (16,−13; 20,−16)
(20,−20, 9) 9 20 (1, 0; 0, 9) (0,−1; 20,−20)

(100,−200, 101) 29 4 (1, 6; 0, 29) (24,−25; 100,−104)
(20,−20, 11) 11 20 (1, 0; 0, 11) (0,−1; 20,−20)
(20,−20, 13) 13 20 (1, 0; 0, 13) (0,−1; 20,−20)
(20,−40, 31) 11 20 (1, 10; 0, 11) (20,−21; 20,−20)
(20,−20, 17) 17 20 (1, 0; 0, 17) (0,−1; 20,−20)
(20,−20, 19) 19 20 (1, 0; 0, 19) (0,−1; 20,−20)
(20,−40, 37) 17 20 (1, 16; 0, 17) (0,−21; 20,−20)
(20, 20, 31) 31 20 (1, 1; 0, 31) (0,−1; 20,−20)
(20, 20, 43) 43 20 (1, 0; 0, 43) (0,−1; 20,−20)

Table 3. Matrices (α, β; 0, δ) mapping τ to the image under
an element fromWe, demonstrating X(τ) is a root of ΨX

n (X)

A B C

2
√

9
√

5− 20 1
4(3−

√
5) 1

8(7− 3
√

5)√
506− 160

√
10 1

6

(
4−
√

10
)

−3/2 +
√

5/2
3/8 1/6 1/16
1
5

√
8− 31i√

2
1
66

(
31− 8i

√
2
)

i/8
√

2

1
5

√
8 + 31i√

2
1
66

(
31 + 8i

√
2
)

−i/8
√

2√
1
2

(√
5 + 2

)
1/2 1

16

(
1−
√

5
)√√

10− 1 1
6

(
5−
√

10
)

1
8

(
3−
√

10
)

11/8 1
22

(
13− 4

√
5
)

1
32

(
7− 3

√
5
)

1
4

√
636− 153

√
15 1

462

(
261− 40

√
15
)

1
16

(√
15− 4

)
14
√

805− 360
√

5 1
140

(
105− 34

√
5
)

1
8

(
21
√

5− 47
)

12
√

697
√

85− 6426 1
204

(
153− 13

√
85
)

1
8

(
83− 9

√
85
)

78
√

14445− 6460
√

5 1
780

(
585− 212

√
5
)

1
4

(
72
√

5− 161
)

646
√

27379− 8658
√

10 969−259
√

10
1292

1
4

(
228
√

10− 721
)

Table 4. Constants defining level 20 expansions (4.11).
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