
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_665-1
© Springer Science+Business Media New York 2015

Combinatorial Optimization and Verification in Self-Assembly

Robert Schweller�

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX, USA

Keywords Algorithmic self-assembly • Self-assembly • Tile Assembly Model • Two-Handed
Assembly • Tile complexity

Years and Authors of Summarized Original Work

2002; Adleman, Cheng, Goel, Huang, Kempe, Moisset, Rothemund
2013; Cannon, Demaine, Demaine, Eisenstat, Patitz, Schweller, Summers, Winslow

Problem Definition

Tile Assembly Models
Two of the most studied tile self-assembly models in the literature are the abstract Tile Assembly
Model (aTAM) [7] and the Two-Handed Tile Assembly Model (2HAM) [4]. Both models
constitute a mathematical model of self-assembly in which system components are four-sided
Wang tiles with glue types assigned to each tile edge. Any pair of glue types are assigned some
nonnegative interaction strength denoting how strongly the pair of glues bind. The models differ in
their rules for growth in that the aTAM allows singleton tiles to attach one at a time to a growing
seed, whereas the 2HAM permits any two previously built assemblies to combine given enough
affinity for attachment.

In more detail, an aTAM system is an ordered triplet .T; �; �/ consisting of a set of tiles T , a
positive integer threshold parameter � called the system’s temperature, and a special tile � 2 T

denoted as the seed tile. Assembly proceeds by attaching copies of tiles from T to a growing seed
assembly whenever the placement of a tile on the 2D grid achieves a total strength of attachment
from abutting edges, determined by the sum of pairwise glue interactions, that meets or exceeds
the temperature parameter � . An additional twist that is often considered is the ability to specify a
relative concentration distribution on the tiles in T . The growth from the initial seed then proceeds
randomly with higher concentrated tile types attaching more quickly than lower concentrated types.
Even when the final assembly is deterministic, adjusting concentration profiles may substantially
alter the expected time to reach the unique terminal state.

The Two-Handed Tile Assembly Model (2HAM) [4] is similar to the aTAM, but removes the
concept of a seed tile. Instead, a 2HAM system .T; �/ produces a new assembly whenever any
two previously built (and potentially large) assemblies may translate together into a new stable
assembly based on glue interactions and temperature. The distinction between the 2HAM and the
aTAM is that the 2HAM allows large assemblies to grow independently and attach as large, pre-
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built assemblies, while the aTAM grows through the step-by-step attachment of singleton tiles to a
growing seed.

A typical goal in tile self-assembly is to design an efficient tile system that uniquely assembles
a target shape. Two primary efficiency metrics are (1) the number of distinct tile types used to self-
assemble the target shape and (2) the expected time the system takes to self-assemble the target
shape. Toward minimizing the number of tiles used to build a shape, the Minimum Tile Set Problem
is considered. Toward the goal of minimizing assembly time, the problem of selecting an optimal
concentration distribution over the tiles of a given set is considered in the Tile Concentration
Problem. Finally, the computational problem of simply verifying whether a given system correctly
and uniquely self-assembles a target shape is considered in the Unique Assembly Verification
Problem. Formally, the problems are as follows:

Problem 1 (The Minimum Tile Set Problem [2]). Given a shape, find the tile system with the
minimum number of tile types that uniquely self-assembles into this shape.

Problem 2 (The Tile Concentration Problem [2]). Given a shape and a tile system that uniquely
produces the given shape, assign concentrations to each tile type so that the expected assembly
time for the shape is minimized.

Problem 3 (The Unique Assembly Verification Problem [2, 4]). Given a tile system and an
assembly, determine if the tile system uniquely self-assembles into the assembly.

Key Results

Minimum Tile Set Problem
The NP-completeness of the Minimum Tile Set Problem within the aTAM is proven in [2] by a
reduction from 3CNF-SAT. The proof is notable in that the polynomial time reduction relies on
the polynomial time solution of the Minimum Tile Set Problem for tree shapes, which the authors
show is polynomial time solvable. The authors also show that the Minimum Tile Set Problem is
polynomial time solvable for n � n squares by noting that since the optimal solution has at most
O.log n/ tile types [7], a brute force search of candidate tile sets finishes in polynomial time as
long as the temperatures of the systems under consideration are all a fixed constant. Extending the
polynomial time solution to find the minimum tile system over any temperature is achieved in [5].

Theorem 1. The Minimum Tile Set Problem is NP-complete within the aTAM. For the restricted
classes of shapes consisting of squares and trees, the Minimum Tile Set Problem is polynomial time
solvable.

Concentration Optimization
The next result provides an approximation algorithm for the Tile Concentration Problem for a
restricted class of aTAM tile system called partial order systems. Partial order systems are systems
in which a unique assembly is constructed, and for any pair of adjacent tiles in the final assembly
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which have positive bonding strength, there is a strict order in which the two tiles are placed
with respect to each other for all possible assembly sequences. For such systems, a O.log n/-
approximation algorithm is presented [2].

Theorem 2. For any partial order aTAM system .T; �; �/ that uniquely self-assembles a
size-n assembly, there exists a polynomial time O.log n/-approximation algorithm for the Tile
Concentration Problem.

Assembly Verification
The next result provides an important distinction in verification complexity between the aTAM
and the 2HAM. In [2] a straightforward quadratic time algorithm for assembly verification is
presented. In contrast, the problem is shown to be co-NP-complete in [4] through a reduction
from 3CNF-SAT. The hardness holds for a 3D generalization of the 2HAM, but requires only 1
step into the third dimension. To achieve this reduction, the exponentially many candidate 3CNF-
SAT solutions are engineered into the order in which the system might grow while maintaining
that these candidate paths all collapse into a single polynomial-sized final assembly in the case
that no satisfying solution exists. This reduction fundamentally relies on the third dimension and
thus leaves open the complexity of 2D verification in the 2HAM.

Theorem 3. The Unique Assembly Verification Problem is co-NP-complete for the 3D 2HAM
and solvable in polynomial time O.jAj2 C jAjjT j/ in the aTAM.

Open Problems

A few open problems in this area are as follows. The Minimum Tile Set Problem has an efficient
solution for squares which stems from a logarithmic upper bound on the complexity of assembling
such shapes. This holds more generally for thick rectangles, but this ceases to be true when the
width of the rectangle becomes sufficiently thin [3]. The complexity of the Minimum Tile Set
Problem is open for this class of simple geometric shapes. For the Tile Concentration Problem, an
exact solution is conjectured to be #P-hard for partial order systems [2], but this has not been
proven. More generally, little is known about the Tile Concentration Problem for non-partial
order systems. Another direction within the scope of minimizing assembly time is to consider
optimizing over the tiles used, as well as the concentration distribution over the tile set. Some
work along these lines has been done with respect to the fast assembly of n � n squares [1]
and the fast implementation of basic arithmetic primitives in self-assembly [6]. In the case of the
Unique Assembly Verification Problem, the complexity of the problem for the 2HAM in 2D is still
unknown. For the aTAM, it is an open question as to whether the quadratic run time of verification
can be improved.
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