
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_660-1
© Springer Science+Business Media New York 2015

Self-Assembly of Squares and Scaled Shapes

Robert Schweller�

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX, USA

Keywords Self-assembly • Tile assembly model • Algorithmic self-assembly • Kolmogorov
complexity • Tile complexity • Scaled shapes

Years and Authors of Summarized Original Work

2000; Rothemund, Winfree
2001; Adleman, Cheng, Goel, Huang
2005; Cheng, Aggarwal, Goldwasser, Kao, Schweller, Espanes
2007; Soloveichik, Winfree

Problem Definition

Abstract Tile Assembly Model
The abstract Tile Assembly Model (aTAM) [3] is a mathematical model of self-assembly in which
system components are four-sided Wang tiles with glue types assigned to each tile edge. Any pair
of glue types are assigned some nonnegative interaction strength denoting how strongly the pair
of glues bind. An aTAM system is an ordered triplet .T; �; �/ consisting of a set of tiles T , a
positive integer threshold parameter � called the system’s temperature, and a special tile � 2 T

denoted as the seed tile. Assembly proceeds by attaching copies of tiles from T to a growing seed
assembly whenever the placement of a tile on the 2D grid achieves a total strength of attachment
from abutting edges, determined by the sum of pairwise glue interactions, that meets or exceeds
the temperature parameter � . The pairwise strength assignment between glues on tile edges is often
restricted to be “linear” in that identical glue pairs may be assigned arbitrary positive values, while
non-equal pairs are required to have interaction strengths of 0. We denote this restricted version of
the model as the standard aTAM. When this restriction is not applied, i.e., any pair of glues may
be assigned any positive integer strength, we call the model the flexible glue aTAM.

Given the aTAM’s model of growth, we may consider the problem of designing an aTAM system
which is guaranteed to grow into a target shape S , given by a set of 2D integer coordinates, and stop
growing. Such systems are guaranteed to exist for any finite shape S , but solutions will typically
vary in the number of tiles jT j used. For a given shape S , an interesting problem is to design a
system that assembles S while using the fewest, or close to the fewest, number of tiles jT j possible.
This fewest possible number of tiles required for the assembly of a given shape S is termed the
program-size complexity of S .

�E-mail: schwellerr@gmail.com

Page 1 of 5



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_660-1
© Springer Science+Business Media New York 2015

Problem 1. Let KSA.n/ and K�
SA.n/ denote the program-size complexity of an n � n square for

the standard aTAM and the flexible glue aTAM, respectively. What are KSA.n/ and K�
SA.n/?

Problem 2. Let KSA.n; k/ and K�
SA.n; k/ denote the program-size complexity of a k � n

rectangle for the standard aTAM and the flexible glue aTAM, respectively. What are KSA.n; k/

and K�
SA.n; k/?

Problem 3. For an arbitrary given shape S , what is the program-size complexity of S? Let the
scale-free program size of S be the smallest tile set system that uniquely builds some scaled-up
version S . Let KSA.S/ and K�

SA.S/ denote the scale-free program size of S for the standard aTAM
and the flexible glue aTAM, respectively. What are KSA.S/ and K�

SA.S/?

Key Results

The best known bounds for program-size complexity for squares, rectangles, and general scaled
shapes are presented in this section.

n � n Squares
The efficient self-assembly of n�n squares has served as a benchmark for self-assembly algorithms
within the aTAM and more general tile assembly models. Within the aTAM, the problem is well
understood up to constant factors. The first result states a general upper bound for the program size
of self-assembled squares for general n, which is matched by an information-theoretic lower bound
that holds for almost all integers n. The precise bounds differ between the standard and flexible glue
models but are tight in both cases. The lower bound of inequality (1) is proven in [3] and is based
on the Kolmogorov complexity of the integer n. The lower bound of (2) is proven in [2] by the same
approach. The upper bound of (1) is proven in [1] and offers an improvement over the initial upper
bound of O.log n/ from [3]. The O.log n/ result of [3] is achieved by implementing a key primitive
in tile self-assembly: a binary counter of log n tiles that grows to length n. The improvement of [1]
is achieved by modifying the counter concept to work with an optimal, variable base. The upper
bound of (2) is proven in [2] and is obtained by combining the aTAM counter primitives with a
scheme for efficiently seeding the counter by extracting bits from the values of the flexible glue
interactions.

Theorem 1. There exist positive constants c1 and c2 such that for almost all integers n 2 N, the
following inequalities hold. Moreover, the upper bounds hold for all n 2 N.

c1

log n

log log n
� KSA.n/ � c2

log n

log log n
: (1)

c1

p
log n � K�

SA.n/ � c2

p
log n: (2)

While the above theorem presents a tight understanding of the program-size complexity for
most self-assembled squares, the information-theoretic lower bound allows for special values of
n to be assembled with a much smaller program size. The program size is in fact as small as one

Page 2 of 5



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_660-1
© Springer Science+Business Media New York 2015

could reasonably hope for. In [3], a tile system is presented that simulates a Busy Beaver Turing
Machine and assembles correspondingly large squares for each tile set size. This construction
yields the following theorem implying that the largest self-assembled square for a given number
of tiles grows faster than any computable function!

Theorem 2. There exists a positive constant c such that for infinitely many n, KSA.n/ � cf .n/

for f .n/ any nondecreasing unbounded computable function.

Thin Rectangles
The program size of self-assembled squares and other thick rectangles is dictated by information-
theoretic bounds which stem from the aTAM’s ability to simulate arbitrary Turing machines given
enough geometric space to work within. When this space is cut down, such as in the case of
building a thin k � n rectangle, the program size is limited by geometric factors. The following
upper and lower bounds are shown in [2] and represent the best known bounds for thin k � n

rectangles in which k D O.log = log log n/. The lower bound is achieved by a pigeon-hole
pumping argument on the types of tiles placed, along with their order of placement, along a width
k column of the target rectangle. The upper bound is based on the construction of a general-base,
general-width counter, which generalizes the binary counter concept of [3].

Theorem 3. There exist positive constants c1 and c2 such that for any n; k 2 N, the following
inequalities hold.

c1

n1=k

k
� K�

SA.n; k/ � KSA.n; k/ � c2.n
1=k C k/:

Scaled Shapes
The program size of general shapes is difficult to analyze as it is highly dependent on geometric
features of the target shape. However, if we consider the assembly of an arbitrarily scaled-up
version of a target shape, these geometric difficulties can be eliminated and a very general result
can be achieved. The next result from [4] shows that the scale-free program size of S is closely
related to the Kolmogorov complexity of S . In particular, the scale-free program-size complexity
of S is a log factor less than the Kolmogorov complexity of S for the standard model, and the
scale-free program size complexity of S is the square root of the Kolmogorov complexity of S for
the flexible glue model. The standard model result is shown in [4] and is achieved by encoding
a compressed description of S in a small tile set which is extracted by a set of tiles simulating a
Turing machine that extracts the pixels of S from this compressed representation. The need for the
scale factor increase of S is to allow room for the Turing machine simulation. In fact, the required
scale factor is the run time of the Turing machine that decompresses the optimal encoding of S .
The flexible glue result is achieved by combining portions of the flexible glue construction for
squares [2] with the construction of [4]. In the following theorem, K.S/ denotes the Kolmogorov
complexity of S with respect to some fixed universal Turing machine.

Page 3 of 5



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_660-1
© Springer Science+Business Media New York 2015

Theorem 4. For any shape S , there exist positive constants c1 and c2 such that

c1

K.S/

log K.S/
� KSA.S/ � c2

K.S/

log K.S/
: (3)

c1

p
K.S/ � K�

SA.S/ � c2

p
K.S/: (4)

Open Problems

A few important open problems in this area are as follows. In the case of squares, the program size
is well understood as long as the temperature of the system is at least two. A long-standing open
problem has been to determine the program-size complexity of n � n squares for temperature-1
self-assembly in which each positive glue force alone is sufficient to cause a tile attachment. To
date, no known method is able to achieve o.n/ tile complexity at temperature-1 for an n�n square,
but no proof exists that this cannot be done. With respect to thin k � n rectangles, the best upper
and lower bound have a gap with respect to variable k. Does there exist a more efficient rectangle
construction, or can a higher lower bound be derived? Finally, while the scale-free program-size
complexity of general shapes is well understood, little is known about the (unscaled) program size
of general shapes. What new tools and geometric classifications can be developed to analyze and
bound this complexity for general shapes?

Cross-References

� Active Self-Assembly and Molecular Robotics with the Nubot Model
� Combinatorial Optimization and Verification in Self-Assembly
� Intrinsic Universality in Self-Assembly
� Patterned Self-Assembly Tile Set Synthesis
� Randomized Self-Assembly
� Robustness in Self-Assembly
� Self-Assembly at Temperature 1
� Self-Assembly of Fractals
� Self-Assembly of Squares and Scaled Shapes
� Self-Assembly with General Shaped Tiles
� Temperature Programming in Self-Assembly
� Two Handed Self-Assembly

Recommended Reading

1. Adleman L, Cheng Q, Goel A, Huang, M-D (2001) Running time and program size for self-
assembled squares. In Proceedings of the thirty-third annual ACM symposium on theory of
computing, New York. ACM, pp 740–748

2. Cheng Q, Aggarwal G, Goldwasser MH, Kao M-Y, Schweller RT, de Espanés PM (2005)
Complexities for generalized models of self-assembly. SIAM J Comput 34:1493–1515

Page 4 of 5

http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget


Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_660-1
© Springer Science+Business Media New York 2015

3. Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares
(extended abstract). In Proceedings of the 32nd ACM symposium on theory of computing,
STOC’00, Portland, pp 459–468

4. Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM J Comput
36(6):1544–1569

Page 5 of 5


	Self-Assembly of Squares and Scaled Shapes
	Years and Authors of Summarized Original Work
	Problem Definition
	Abstract Tile Assembly Model

	Key Results
	nn Squares
	Thin Rectangles
	Scaled Shapes

	Open Problems
	Cross-References
	Recommended Reading




