

-Use log n tile types to seed counter:

log n

-Use log n tile types capable of Binary counting:

-Use 8 additional tile types capable of binary counting:

o o o o log n

-Use log n tile types capable of Binary counting:

-Use 8 additional tile types capable of binary counting:

-Use log n tile types capable of Binary counting:

-Use 8 additional tile types capable of binary counting:

1	1	1	1						
1	1	1	0						
1	1	0	1						
1	1	0	0						
1	0	1	1						
1	0	1	0						
1	0	0	1						
1	0	0	0						
0	1	1	1						
0	1	1	0						
0	1	0	1						
0	1	0	0						
0	0	1	1						
0	0	1	0						
0	0	0	1						
0	0	0	0						
log n									

-Use log n tile types capable of Binary counting:

-Use 8 additional tile types capable of binary counting:

1	1	1	1											_	Us	se	8	ac	di
1	1	1	0												2	n	h		of
1	1	0	1											Ľ	d	pa	1D	ie	U
1	1	0	0																
1	0	1	1																
1	0	1	0																
1	0	0	1																
1	0	0	0																
0	1	1	1																
0	1	1	0																
0	1	0	1																
0	1	0	0																
0	0	1	1																
0	0	1	0																
0	0		1																
0	0	0	0																
U	U	U	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
				0	0	0	0	1	1	1	1	- 0	- 0	- 0	-	1	1	1	
				0	0	1	1	-	0	1	1	0	0	1	1	-	-	1	1
				0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	
				U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1

Binary Counter (Rothemund, Winfree 2000)

Wow. Can we meet that?

Current Upper Bound:

O(log n) (Rothemund, Winfree 2000)

Barish, Shulman, Rothemund, Winfree, 2009

Building k x n Rectangles

k[.]

Building k x n Rectangles

k-digit, base n^(1/k) counter:

Tile Complexity: $O(k + n^{1/k})$

Building k x n Rectangles

Outline

- Background, Motivation
- Model
- Rectangle and Squares

