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Can this be beat?

What is a lower 

bound?
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Can this be beat?

What is a lower 

bound?

Challenge:

Derive information 

theoretic lower 

bound
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)
loglog

log
(

n

n


Lower Bound: 
(almost all n)

(Rothemund, Winfree

2000)

Wow.  Can we meet that?

Current Upper Bound:

O(log n)
(Rothemund, Winfree 2000)
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Build a 2 x 16 rectangle: t = 2

S C0C1 C2 C3

S1 0 0 0 1

C1 C2 C3

1 1 2 2 3 31 2 2 3 P

C0 C1 C2 C3 C0 C1 C2 C3

Lower Bound         Upper Bound

)( n

2 x n lines

)( n
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Outline

• Background, Motivation

• Model

• Rectangle and Squares
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(Adleman, Cheng, Goel, 

Huang STOC 2001)
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Tile Complexity:
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Lower Bound:

(Rothemund, Winfree

2000)


