
Fast arithmetic in algorithmic self-assembly

Alexandra Keenan1 • Robert Schweller1 •

Michael Sherman1 • Xingsi Zhong1

Published online: 17 November 2015

� Springer Science+Business Media Dordrecht 2015

Abstract In this paper we consider the time complexity

of adding two n-bit numbers together within the tile self-

assembly model. The (abstract) tile assembly model is a

mathematical model of self-assembly in which system

components are square tiles with different glue types

assigned to tile edges. Assembly is driven by the attach-

ment of singleton tiles to a growing seed assembly when

the net force of glue attraction for a tile exceeds some fixed

threshold. Within this frame work, we examine the time

complexity of computing the sum of two n-bit numbers,

where the input numbers are encoded in an initial seed

assembly, and the output sum is encoded in the final, ter-

minal assembly of the system. We show that this problem,

along with multiplication, has a worst case lower bound of

Xð
ffiffiffi

n
p

Þ in 2D assembly, and Xð
ffiffiffi

n3
p

Þ in 3D assembly. We

further design algorithms for both 2D and 3D that meet this

bound with worst case run times of Oð
ffiffiffi

n
p

Þ and Oð
ffiffiffi

n3
p

Þ
respectively, which beats the previous best known upper

bound of O(n). Finally, we consider average case com-

plexity of addition over uniformly distributed n-bit strings

and show how we can achieve Oðlog nÞ average case time

with a simultaneous Oð
ffiffiffi

n
p

Þ worst case run time in 2D. As

additional evidence for the speed of our algorithms, we

implement our algorithms, along with the simpler

O(n) time algorithm, into a probabilistic run-time simulator

and compare the timing results.

Keywords Algorithmic self-assembly � Computational

geometry � Adder � Tile assembly model

1 Introduction

Self-assembly is the process by which systems of simple

objects autonomously organize themselves through local

interactions into larger, more complex objects. Self-

assembly processes are abundant in nature and serve as the

basis for biological growth and replication. Understanding

how to design and efficiently program molecular self-

assembly systems to harness this power promises to be

fundamental for the future of nanotechnology. One par-

ticular direction of interest is the design of molecular

computing systems for efficient solution of fundamental

computational problems. In this paper we study the com-

plexity of computing arithmetic primitives within a well

studied model of algorithmic self-assembly, the abstract

tile assembly model.

The abstract tile assembly model (aTAM) models sys-

tem monomers with four sided Wang tiles with glue types

assigned to each edge. Assembly proceeds by tiles

attaching, one by one, to a growing initial seed assembly

whenever the net glue strength of attachment exceeds some

fixed temperature threshold (Fig. 2). The aTAM has been

shown to be capable of universal computation (Winfree

1998), and has promising computational potential with a

DNA implementation (Mao et al. 2000). Research lever-

aging this computational power has lead to efficient

assembly of complex geometric shapes and patterns with a

number of recent results in FOCS, SODA, and ICALP

& Alexandra Keenan

abkeenan@utpa.edu

Robert Schweller

rtschweller@utpa.edu

Michael Sherman

mjsherman@utpa.edu

Xingsi Zhong

zhong@utpa.edu

1 University of Texas - Pan American, Edinburg, TX, USA

123

Nat Comput (2016) 15:115–128

DOI 10.1007/s11047-015-9512-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9512-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9512-7&domain=pdf

(Meunier et al. 2014; Abel et al. 2010; Bryans et al. 2011;

Cook et al. 2011; Doty et al. 2012, 2010; Schweller and

Sherman 2013; Fu et al. (2012; Chandran et al. 2009; Doty

2010; Kao et al. 2008; Demaine et al. 2013, 2014). This

universality also allows the model to serve directly as a

model for computation in which an input bit string is

encoded into an initial assembly. The process of self-

assembly and the final produced terminal assembly repre-

sent the computation of a function on the given input.

Given this framework, it is natural to ask how fast a given

function can be computed in this model. Tile assembly

systems can be designed to take advantage of massive

parallelism when multiple tiles attach at distinct positions

in parallel, opening the possibility for faster algorithms

than what can be achieved in more traditional computa-

tional models. On the other hand, tile assembly algorithms

must use up geometric space to perform computation, and

must pay substantial time costs when communicating

information between two physically distant bits. This cre-

ates a host of challenges unique to this physically moti-

vated computational model that warrant careful study.

In this paper we consider the time complexity of adding

two n-bit numbers within the abstract tile assembly model.

We show that this problem, along with multiplication, has a

worst-case lower bound of Xð
ffiffiffi

n
p

Þ time in 2D and Xð
ffiffiffi

n3
p

Þ
time in 3D. These lower bounds are derived by a reduction

from a simple problem we term the communication prob-

lem in which two distant bits must compute the AND

function between themselves. This general reduction

technique can likely be applied to a number of problems

and yields key insights into how one might design a sub-

linear time solution to such problems. We in turn show how

these lower bounds, in the case of 2D and 3D addition, are

matched by corresponding worst case Oð
ffiffiffi

n
p

Þ and Oð
ffiffiffi

n3
p

Þ
run time algorithms, respectively, which improves upon the

previous best known result of O(n) (Brun 2007). We then

consider the average case complexity of addition given two

uniformly generated random n-bit numbers and construct a

Oðlog nÞ average case time algorithm that achieves simul-

taneous worst case run time Oð
ffiffiffi

n
p

Þ in 2D. To the best of

our knowledge this is the first tile assembly algorithm

proposed for efficient average case adding. Our results are

summarized in Table 1. Also, tile self-assembly software

simulations were conducted to visualize the diverse

approaches to fast arithmetic presented in this paper, as

well as to compare them to previous work. The adder tile

constructions described in Sects. 4, 3 and 5, and the pre-

vious best known algorithm from Brun (2007) were sim-

ulated using the two timing models described in Sect. 2.4.

These results can be seen in the graphs of Fig. 1.

2 Definitions

2.1 Basic notation

Let Nn denote the set f1; . . .; ng and let Zn denote the set

f0; . . .; n� 1g: Consider two points p; q 2 Zd; p ¼
ðp1; . . .pdÞ; q ¼ ðq1; . . .; qdÞ: Define the maximum norm to

be Dp;q,max1� i� dfjpi � qijg (Fig. 2).

2.2 Abstract tile assembly model

Tiles Consider some alphabet of symbols P called the glue

types. A tile is a finite edge polygon (polyhedron in the

case of a 3D generalization) with some finite subset of

border points each assigned some glue type from P: Fur-

ther, each glue type g 2 P has some non-negative integer

strength str(g). For each tile t we also associate a finite

string label (typically ‘‘0’’, or ‘‘1’’, or the empty label in

this paper), denoted by label(t), which allows the classifi-

cation of tiles by their labels. In this paper we consider a

special class of tiles that are unit squares (or unit cubes in

3D) of the same orientation with at most one glue type per

face, with each glue being placed exactly in the center of

the tile’s face. We denote the location of a tile to be the

point at the center of the square or cube tile. In this paper

we focus on tiles at integer locations.

Assemblies An assembly is a finite set of tiles whose

interiors do not overlap. Further, to simplify formalization

in this paper, we require the center of each tile in an

assembly to be an integer coordinate (or integer triplet in

3D). If each tile in A is a translation of some tile in a set of

tiles T, we say that A is an assembly over tile set T. For a

given assembly � ; define the bond graph G� to be the

weighted graph in which each element of � is a vertex, and

the weight of an edge between two tiles is the strength of

the overlapping matching glue points between the two tiles.

Table 1 Summary of results
Time complexity Average case

Addition(2D) Hð
ffiffiffi

n
p

Þ (Theorems 2, 4, 6) Oðlog nÞ (Theorems 5, 6)

Addition(3D) Hð
ffiffiffi

n3
p

Þ (Theorems 2, 7) Oðlog nÞ (Theorem 7)

Previous Best(2D) O(n) Brun (2007) –

Multiplication(d-D) Xð
ffiffiffi

nd
p

Þ (Theorem 3) –

116 A. Keenan et al.

123

Note that only overlapping glues that are the same type

contribute a non-zero weight, whereas overlapping, non-

equal glues always contribute zero weight to the bond

graph. The property that only equal glue types interact with

each other is referred to as the diagonal glue function

property and is perhaps more feasible than more general

glue functions for experimental implementation (see

Cheng et al. (2005) for the theoretical impact of relaxing

this constraint). An assembly � is said to be s-stable for an
integer s if the min-cut of G� is at least s:

Tile attachment Given a tile t, an integer s; and a s-
stable assembly A, we say that t may attach to A at tem-

perature s to form A0 if there exists a translation t0 of t such
that A0 ¼ A

S

ft0g; and A0 is s-stable. For a tile set T we use

notation A !T ;s A
0 to denote that there exists some t 2 T

that may attach to A to form A0 at temperature s: When T

and s are implied, we simply say A ! A0: Further, we say

that A !� A0 if either A ¼ A0; or there exists a finite

sequence of assemblies hA1. . .Aki such that

A ! A1 ! � � � ! Ak ! A0:
Tile systems A tile system C ¼ ðT; S; sÞ is an ordered

triplet consisting of a set of tiles T referred to as the sys-

tem’s tile set, a s-stable assembly S referred to as the

system’s seed assembly, and a positive integer s referred to

as the system’s temperature. A tile system C ¼ ðT ; S; sÞ
has an associated set of producible assemblies, PRODC;

which define what assemblies can grow from the initial

seed S by any sequence of temperature s tile attachments

from T. Formally, S 2 PRODC is a base case producible

assembly. Further, for every A 2 PRODC; if A !T ;s A
0; then

A0 2 PRODC: That is, assembly S is producible, and for

every producible assembly A, if A can grow into A0; then A0

is also producible. We further denote a producible assem-

bly A to be terminal if A has no attachable tile from T at

temperature s: We say a system C ¼ ðT ; S; sÞ uniquely

produces an assembly A if all producible assemblies can

grow into A through some sequence of tile attachments.

More formally, C uniquely produces an assembly A 2
PRODC if for every A0 2 PRODC it is the case that A0 !� A:
Systems that uniquely produce one assembly are said to be

deterministic. In this paper, we focus exclusively on

deterministic systems, and our general goal will be to

design systems whose uniquely produced assembly speci-

fies the solution to a computational problem. For recent

consideration of non-determinism in tile self-assembly

see Chandran et al. (2009), Bryans et al. (2011), Cook

et al. (2011), Kao et al. (2008) and Doty (2010).

2.3 Problem description

We now formalize what we mean for a tile self-assembly

system to compute a function. To do this we present the

concept of a tile assembly computer (TAC) which consists

of a tile set and temperature parameter, along with input

and output templates. The input template serves as a seed

structure with a sequence of wildcard positions for which

tiles of label ‘‘0’’ and ‘‘1’’ may be placed to construct an

initial seed assembly. An output template is a sequence of

points denoting locations for which the TAC, when grown

Fig. 1 Adder timing model simulations

(a) (b)

Fig. 2 Cooperative tile binding in the aTAM. a Incorrect binding.

b Correct binding

Fast arithmetic in algorithmic self-assembly 117

123

from a filled in template, will place tiles with ‘‘0’’ and ‘‘1’’

labels that denote the output bit string. A TAC then is said

to compute a function f if for every seed assembly derived

by plugging in a bitstring b, the terminal assembly of the

system with tile set T and temperature s will be such that

the value of f(b) is encoded in the sequence of tiles placed

according to the locations of the output template. We now

develop the formal definition of the TAC concept. We note

that the formality in the input template is of substantial

importance. Simpler definitions which map seeds to input

bit strings, and terminal assemblies to output bitstrings, are

problematic in that they allow for the possibility of

encoding the computation of function f in the seed struc-

ture. Even something as innocuous sounding as allowing

more than a single type of ‘‘0’’ or ‘‘1’’ tile as an input bit

has the subtle issue of allowing pre-computing of f.1

Input template Consider a tile set T containing exactly

one tile t0 with label ‘‘0’’, and one tile t1 with label ‘‘1’’. An

n-bit input template over tile set T is an ordered pair U ¼
ðR;BðiÞÞ; where R is an assembly over T � ft0; t1g; B :

Nn ! Z2; and B(i) is not the position of any tile in R for

every i from 1 to n. The sequence of n coordinates denoted

by B conceptually denotes ‘‘wildcard’’ tile positions for

which copies of t0 and t1 will be filled in for every instance

of the template. For notation we define assembly Ub over T,

for bit string b ¼ b1; . . .bn; to be the assembly consisting of

assembly R unioned with a set of n tiles ti for i from 1 to n,

where ti is equal a translation of tile tbðiÞ to position B(i).

That is, Ub is the assembly R with each position B(i) tiled

with either t0 or t1 according to the value of B(i).

Output template A k-bit output template is simply a

sequence of k coordinates denoted by function C : Nk !
Z2: For an output template V, an assembly A over T is said

to represent binary string c ¼ c1; . . .; ck over template V if

the tile at position C(i) in A has label ci for all i from 1 to

k. Note that output template solutions are much looser than

input templates in that there may be multiple tiles with labels

‘‘1’’ and ‘‘0’’, and there are no restrictions on the assembly

outside of the k specified wildcard positions. The strictness for

the input template stems from the fact that the input must

‘‘look the same’’ in all ways except for the explicit input bit

patterns. If this were not the case, it would likely be possible

to encode the solution to the computational problem into the

input template, resulting is a trivial solution.

Function computing problem A tile assembly computer

(TAC) is an ordered quadruple I ¼ ðT ;U;V ; sÞ where T is

a tile set, U is an n-bit input template, and V is a k-bit

output template. A TAC is said to compute function f :

Zn
2 ! Zk

2 if for any b 2 Zn
2 and c 2 Zk

2 such that f ðbÞ ¼ c;

then the tile system CI;b ¼ ðT ;Ub; sÞ uniquely assembles

an assembly A which represents c over template V. For a

TAC I that computes the function f : Z2n
2 ! Znþ1

2 where

f ðr1. . .r2nÞ ¼ r1. . .rn þ rnþ1. . .r2n; we say that I is an n-bit

adder TAC with inputs a ¼ r1. . .rn and b ¼ rnþ1. . .r2n: An

n-bit multiplier TAC is defined similarly.

2.4 Run time models

We analyze the complexity of self-assembly arithmetic

under two established run time models for tile self-

assembly: the parallel time model (Becker et al. 2006;

Brun 2007) and the continuous time model (Adleman et al.

2001, 2002; Cheng et al. 2004; Becker et al. 2006).

Informally, the parallel time model simply adds, in parallel,

all singleton tiles that are attachable to a given assembly

within a single time step. The continuous time model, in

contrast, models the time taken for a single tile to attach as

an exponentially distributed random variable. The paral-

lelism of the continuous time model stems from the fact

that if an assembly has a large number of attachable

positions, then the first tile to attach will be an exponen-

tially distributed random variable with rate proportional to

the number of attachment sites, implying that a larger

number of attachable positions will speed up the expected

time for the next attachment. When not otherwise specified,

we use the term run time to refer to parallel run time by

default. The stated asymptotic worst case and average case

run times for each of our algorithms hold within both run

time models.

Parallel run-time For a deterministic tile system C ¼
ðT; S; sÞ and assembly A 2 PRODC; the 1-step transition set

of assemblies for A is defined to be STEPC;A ¼ fB 2
PRODCjA !T ;s Bg: For a given A 2 PRODC; let

PARALLELC;A ¼
S

B2STEPC;A
B; ie, PARALLELC;A is the result

of attaching all singleton tiles that can attach directly to A.

Note that since C is deterministic, PARALLELC;A is guar-

anteed to not contain overlapping tiles and is therefore an

assembly. For an assembly A, we say A�CA
0 if A0 ¼

PARALLELC;A: We define the parallel run-time of a deter-

ministic tile system C ¼ ðT; S; sÞ to be the non-negative

integer k such that A1�CA2�C. . .�CAk where A1 ¼ S and

fAkg ¼ TERMC: As notation we denote this value for tile

system C as qC: For any assemblies A and B in PRODC such

that A1�CA2�C. . .�CAk with A ¼ A1 and B ¼ Ak; we say

that A�k
CB: Alternately, we denote B with notation A�k

C:

For a TAC I ¼ ðT ;U;V ; sÞ that computes function f, the

run time of I on input b is defined to be the parallel run-

time of tile system CI;b ¼ ðT ;Ub; sÞ: Worst case and

average case run time are then defined in terms of the

largest run time inducing b and the average run time for a

uniformly generated random b.

1 This subtle issue seems to exist with some previous formulations of

tile assembly computation.

118 A. Keenan et al.

123

Continuous run-time In the continuous run time model

the assembly process is modeled as a continuous time

Markov chain and the time spent in each assembly is a

random variable with an exponential distribution. The

states of the Markov chain are the elements of PRODC and

the transition rate from A to A0 is 1
jT j if A ! A0 and 0

otherwise. For a given tile assembly system C; we use

notation CMC to denote the corresponding continuous time

Markov chain. Given a deterministic tile system C with

unique assembly U, the run time of C is defined to be the

expected time of CMC to transition from the seed assembly

state to the unique sink state U. As notation we denote this

value for tile system C as 1C: One immediate useful fact

that follows from this modeling is that for a producible

assembly A of a given deterministic tile system, if A ! A0;
then the time taken for CMC to transition from A to the first

A00 that is a superset of A0 (through 1 or more tile attach-

ments) is an exponential random variable with rate 1/|T|.

For a more general modeling in which different tile types

are assigned different rate parameters see Adleman et al.

(2001, 2002) and Cheng et al. (2004). Our use of rate 1/|T|

for all tile types corresponds to the assumption that all tile

types occur at equal concentration and the expected time

for 1 tile (of any type) to hit a given attachable position is

normalized to 1 time unit. Note that as our tile sets are

constant in size in this paper, the distinction between equal

or non-equal tile type concentrations does not affect

asymptotic run time. For a TAC I ¼ ðT ;U;V ; sÞ that

computes function f, the run time of I on input b is defined

to be the continuous run-time of tile system CI;b ¼
ðT;Ub; sÞ: Worst case and average case run time are then

defined in terms of the largest run time inducing b and the

average run time for a uniformly generated random b.

2.5 Communication problem

The D-communication problem is the problem of com-

puting the function f ðb1; b2Þ ¼ b1 ^ b2 for bits b1 and b2 in

the 3D aTAM under the additional constraint that the input

template for the solution U ¼ ðR;BðiÞÞ be such that D ¼
maxðjBð1Þx � Bð2Þxj; jBð1Þy � Bð2Þyj; jBð1Þz � Bð2ÞzjÞ:

We first establish a lemma which intuitively states that

for any 2 seed assemblies that differ in only a single tile

position, all points of distance greater than r from the point

of difference will be identically tiled (or empty) after r time

steps of parallelized tile attachments:

Lemma 1 Let Sp;t and Sp;t0 denote two assemblies that

are identical except for a single tile t versus t0 at position
p ¼ ðpx; py; pzÞ in each assembly. Further, let C ¼
ðT; Sp;t; sÞ and C0 ¼ ðT; Sp;t0 ; sÞ be two deterministic tile

assembly systems such that Sp;t�
r
C0R and Sp;t0�

r
C0R0 for

non-negative integer r. Then for any point q ¼ ðqx; qy; qzÞ
such that r\maxðjpx � qxj; jpy � qyj; jpz � qzjÞ; it must be
that Rq ¼ R0

q; ie, R and R0 contain the same tile at point q.

Proof We show this by induction on r. As a base case of

r ¼ 0; we have that R ¼ Sp;t and R0 ¼ Sq;t0 ; and therefore R

and R0 are identical at any point outside of point p by the

definition of Sp;t and Sp;t0 :

Inductively, assume that for some integer k we have that

for all points w such that k\Dp;w,maxðjpx � wxj; jpy �
wyj; jpz � wzjÞ; we have that Rk

w ¼ R0k
w ; where Sp;t�

k
CR

k;

and Sp;t0�
k
C0R0k: Now consider some point q such that k þ

1\Dp;q,max jpx � qxj; jpy � qyj; jpz � qzj; along with

assemblies Rkþ1 and R0kþ1 where Sp;t�
kþ1Rkþ1; and

Sp;t0�
kþ1R0kþ1: Consider the direct neighbors (6 of them

in 3D) of point q. For each neighbor point c, we know that

Dp;c [k: Therefore, by inductive hypothesis, Rk
c ¼ R0k

c

where Sp;t�
k
CR

k; and Sp;t0�
k
C0R0k: Therefore, as attachment

of a tile at a position is only dependent on the tiles in

neighboring positions of the point, we know that tile Rkþ1
q

may attach to both Rk and R0k at position q, implying that

Rkþ1
q ¼ R0kþ1

q as C and C0 are deterministic. h

Theorem 1 Any solution to the D-communication
problem has run time at least 1

2
D:

Proof Consider a TAC I ¼ ðT;U ¼ ðR;BðiÞÞ;VðiÞ; sÞ
that computes the D-communication problem. First, note

that B has domain of 1 and 2, and V has domain of just 1

(the input is 2 bits, the output is 1 bit). We now consider

the value DV defined to be the largest distance between the

output bit position of V from either of the two input bit

positions in B: Let DV,maxðDBð1Þ;Vð1Þ;DBð2Þ;Vð1ÞÞ: Without

loss of generality, assume DV ¼ DBð1Þ;Vð1Þ: Note that

DV � 1
2
D:

Now consider the computation of f ð0; 1Þ ¼ 0 versus the

computation of f ð1; 1Þ ¼ 1 via our TAC I: Let A0 denote

the terminal assembly of system C0 ¼ ðT;U0;1; sÞ and let

A1 denote the terminal assembly of system C1 ¼
ðT;U1;1; sÞ: As I computes f, we know that A0

Vð1Þ 6¼
A1
Vð1Þ: Further, from Lemma 1, we know that for any

r\DV ; we have that W0
Vð1Þ ¼ W1

Vð1Þ for any W0 and W1

such that U0;1�
r
C0
W0 and U1;1�

r
C1
W1: Let dI denote the

run time of I: Then we know that U0;1�
dI
C0
A0; and

U1;1�
dI
C1
A1 by the definition of run time. If dI\DV ; then

Lemma 11 implies that that A0
Vð1Þ ¼ A1

Vð1Þ; which contra-

dicts the fact that I compute f. Therefore, the run time dI is

at least DV � 1
2
D: h

Fast arithmetic in algorithmic self-assembly 119

123

2.6 Xð
ffiffiffi

nd
p

Þ Lower bounds for addition

and multiplication

We now show how to reduce instances of the communi-

cation problem to the arithmetic problems of addition and

multiplication in 2D and 3D to obtain lower bounds of

Xð
ffiffiffi

n
p

Þ and Xð
ffiffiffi

n3
p

Þ respectively.
We first show the following Lemma which lower

bounds the distance of the farthest pair of points in a set of

n points. We believe this Lemma is likely well known, or is

at least the corollary of an established result and omit it’s

proof.

Lemma 2 For positive integers n and d, consider A � Zd

and B � Zd such that A
T

B ¼ ; and jAj ¼ jBj ¼ n: There

must exist points p 2 A and q 2 B such that

Dp;q �d1
2
d

ffiffiffiffiffi

2nd
p

ee � 1:

Theorem 2 Any n-bit adder TAC that has a dimension d

input template for d ¼ 1; d ¼ 2; or d ¼ 3; has a worst case

run time of Xð
ffiffiffi

nd
p

Þ:

Proof To show the lower bound, we will reduce the D-
communication problem for some D ¼ Xð

ffiffiffi

nd
p

Þ to the n-bit

adder problem with a d-dimension template. Consider

some n-bit adder TAC I ¼ ðT ;U ¼ ðF;WÞ;V ; sÞ such that

U is a d-dimension template. The 2n sequence of wildcard

positions W of this TAC must be contained in d-dimen-

sional space by the definition of a d-dimension template,

and therefore by Lemma 2 there must exist points W(i) for

i� n; and Wðnþ jÞ for j� n; such that DWðiÞ;WðnþjÞ � d1
2

d
ffiffiffiffiffi

2nd
p

ee � 1 ¼ Xð
ffiffiffi

nd
p

Þ: Now consider two n-bit inputs a ¼
an. . .a1 and b ¼ bn. . .b1 to the adder TAC I such that:

ak ¼ 0 for any k[i and any k\j; and ak ¼ 1 for any k

such that j� k\i: Further, let bk ¼ 0 for all k 6¼ j: The

remaining bits ai and aj are unassigned variables of value

either 0 or 1. Note that the iþ 1 bit of aþ b is 1 if and only

if ai and bj are both value 1. This setup constitutes our

reduction of the D-communication problem to the addition

problem as the adder TAC template with the specified bits

hardcoded in constitutes a template for the D-communi-

cation problem that produces the AND of the input bit pair.

We now specify explicitly how to generate a communica-

tion TAC from a given adder TAC.

For given n-bit adder TAC I ¼ ðT ;U ¼ ðF;WÞ;V; sÞ
with dimension d input template, we derive a D-commu-

nication TAC q ¼ ðT ;U2 ¼ ðF2;W2Þ;V2; sÞ as follows.

First, let W2ð1Þ ¼ WðiÞ; and W2ð2Þ ¼ Wðnþ jÞ: Note that

as DWðiÞ;WðnþjÞ ¼ Xð
ffiffiffi

nd
p

Þ; W2 satisfies the requirements for

a D-communication input template for some D ¼ Xð
ffiffiffi

nd
p

Þ:
Derive the frame of the template F2 from F by adding tiles

to F as follows: For any positive integer k[i; or k\j; or

k[n but not k ¼ nþ j; add a translation of t0 (with label

‘‘0’’) translated to position W(k). Additionally, for any k

such that j� k\i; add a translation of t1 (with label ‘‘1’’) at

translation W(k).

Now consider the D-communication TAC q ¼ ðT ;U2 ¼
ðF2;W2Þ;V2; sÞ for some D ¼ Xð

ffiffiffi

nd
p

Þ: As assembly

U2
ai;bj

¼ Ua1...an;b1...bn ; we know that the worst case run time

of q is at most that of the worst case run time of I:

Therefore, by Theorem 1, we have that I has a run time of

at least Xð
ffiffiffi

nd
p

Þ: h

Theorem 3 Any n-bit multiplier TAC that has a dimen-

sion d input template for d ¼ 1; d ¼ 2; or d ¼ 3; has a

worst case run time of Xð
ffiffiffi

nd
p

Þ:

Proof Consider some n-bit multiplier TAC I ¼ ðT ;U ¼
ðF;WÞ;V ; sÞ with d-dimension input template. By

Lemma 2, some W(i) and Wðnþ jÞ must have distance at

least D�d1
2
d

ffiffiffiffiffi

2nd
p

ee � 1: Now consider input strings a ¼
an. . .a1 and b ¼ bn. . .b1 to I such that ai and bj are of

variable value, and all other ak and bk have value 0. For

such input strings, the iþ j bit of the product ab has value 1

if and only if ai ¼ bj ¼ 1: Thus, we can convert the n-bit

multiplier system I into a D-communication TAC with the

same worst case run time in the same fashion as for The-

orem 2, yielding a Xð
ffiffiffi

nd
p

Þ lower bound for the worst case

run time of I: h

As with addition, the lower bound implied by the limited

dimension of the input template alone yields the general

lower bound for d dimensional multiplication TACs.

3 Optimal 2D addition

We now present an adder TAC that achieves a run time of

Oð
ffiffiffi

n
p

Þ; which matches the lower bound from Theorem 2.

This adder TAC closely resembles an electronic carry-se-

lect adder in that the addends are divided into sections of

size
ffiffiffi

n
p

and the sum of the addends comprising each

section is computed for both possible carry-in values. The

correct result for the subsection is then selected after a

carry-out has been propagated from the previous subsec-

tion. Within each subsection, the addition scheme resem-

bles a ripple-carry adder.

Theorem 4 There exists an n-bit adder TAC at tem-

perature 2 with a worst case run-time of Oð
ffiffiffi

n2
p

Þ:

Proof Please see Sects. 3.1–3.2. For additional detail,

see Keenan et al. (2013). h

120 A. Keenan et al.

123

3.1 Construction

Input/output template Figure 3a, b are examples of I/O

templates for a 9-bit adder TAC. The inputs to the addition

problem in this instance are two9-bit binary numbersA andB

with the least significant bit ofA and B represented byA0 and

B0; respectively. The north facing glues in the formofAi orBi

in the input template must either be a 1 or a 0 depending on

the value of the bit inAi orBi:The placement for these tiles is

shown in Fig. 3a while a specific example of a possible input

template is shown in Fig. 4a. The sum of A ? B, C, is a ten

bit binary number where C0 represents the least significant

bit. The placement for the tiles representing the result of the

addition is shown in Fig. 3b.

To construct an n-bit adder in the case that n is a perfect

square, split the two n-bit numbers into
ffiffiffi

n
p

sections each

with
ffiffiffi

n
p

bits. Place the bits for each of these two numbers

as per the previous paragraph, except with
ffiffiffi

n
p

bits per row,

making sure to alternate between A and B bits. There will

be the same amount of space between each row as seen in

the example template Fig. 3a. All Z, NC; and F0; must be

placed in the same relative locations. The solution, C, will

be in the output template s.t. Ci will be three tile positions

above Bi and a total of size nþ 1:

Below, we use the adder tile set to add two nine-bit

numbers: A ¼ 100110101 and B ¼ 110101100 to demon-

strate the three stages in which the adder tile system per-

forms addition.

Step one: Addition With the inclusion of the seed

assembly (Fig. 4a) to the tile set (Fig. 5), the first subset of

tiles able to bind are the addition tiles shown in Fig. 5a.

These tiles sum each pair of bits from A and B (for

example, A0 þ B0) (Fig. 4b). Tiles shown in yellow are

actively involved in adding and output the sum of each bit

pair on the north face glue label. Yellow tiles also output a

carry to the next more significant bit pair, if one is needed,

as a west face glue label. Spacer tiles (white) output a B

glue on the north face and serve to propagate carry infor-

mation and the value of Ai to the adjacent Bi: Each row

computes this addition step independently and outputs a

carry or no-carry west face glue on the westernmost tile of

each row (Fig. 4c). In a later step, this carry or no-carry

information will be propagated northwards from the

southernmost row in order to determine the sum. Note that

immediately after the first addition tile is added to a row of

the seed assembly, a second layer may form by the

attachment of tiles from the increment tile set (Fig. 5c).

While these two layers may form nearly concurrently, we

separate them in this example for clarity and instead

address the formation of the second layer of tiles in Step

Two: Increment below.

Step two: Increment As the addition tiles bind to the

seed, tiles from the incrementation tile set (Fig. 5c) may

also begin to cooperatively attach. For clarity, we show

their attachment following the completion of the addition

layer. The purpose of the incrementation tiles is to deter-

mine the sum for each A and B bit pair in the event of a no-

carry from the row below and in the event of a carry from

the row below (Fig. 6). The two possibilities for each bit

pair are presented as north facing glues on yellow incre-

ment tiles. These north face glues are of the form (x, y)

where x represents the value of the sum in the event of no-

carry from the row below while y represents the value of

the sum in the event of a carry from the row below. White

incrementation tiles are used as spacers, with the sole

purpose of passing along carry or no-carry information via

their east/west face glues F0; which represents a no-carry,

and F, which represents a carry.

Step three: Carry propagation and output The final step

of the addition mechanism presented here propagates carry

or no-carry information northwards from the southernmost

row of the assembly using tiles from the tile set in Fig. 5b

and then outputs the answer using the tile set in Fig. 5d.

Following completion of the incrementation layers, tiles

may begin to grow up the west side of the assembly as

shown in Fig. 7a. When the tiles grow to a height such that

the empty space above the increment row is presented with

a carry or no-carry as in Fig. 7b, the output tiles may begin

to attach from west to east to print the answer (Fig. 7c). As

the carry propagation column grows northwards and pre-

sents carry or no carry information to each empty space

above each increment layer, the sum may be printed for

each row Fig. 7d, e. When the carry propagation column

reaches the top of the assembly, the most significant bit of

(a) (b)

Fig. 3 These are example I/O templates for the worst case Oð
ffiffiffi

n
p

Þ
time addition introduced in Sect. 3. a Addition input template.

b Addition output template

Fast arithmetic in algorithmic self-assembly 121

123

the sum may be determined and the calculation is complete

(Fig. 7f).

3.2 Time complexity

3.2.1 Parallel time

Using the parallel runtime model described in Sect. 2.4 we

will show that the addition algorithm presented in this

section has a worst case runtime of Oð
ffiffiffi

n
p

Þ: In order to ease

the analysis we will assume that each logical step of the

algorithm happens in a synchronized fashion even though

parts of the algorithm are running concurrently.

The first step of the algorithm is the addition of two

Oð
ffiffiffi

n
p

Þ numbers co-located on the same row. This first step

occurs by way of a linear growth starting from the leftmost

bit all the way to the rightmost bit of the row. The growth

of a line one tile at a time has a runtime on the order of the

length of the line. In the case of our algorithm, the row is of

size Oð
ffiffiffi

n
p

Þ and so the runtime for each row is Oð
ffiffiffi

n
p

Þ: The
addition of each of the

ffiffiffi

n
p

rows happens independently, in

parallel, leading to a Oð
ffiffiffi

n
p

Þ runtime for all rows. Next, we

increment each solution in each row of the addition step,

keeping both the new and old values. As with the first step,

each row can be completed independently in parallel by

way of a linear growth across the row leading to a total

runtime of Oð
ffiffiffi

n
p

Þ for this step. After we increment our

current working solutions we must both generate and

propagate the carries for each row. In our algorithm, this

simply involves growing a line across the leftmost wall of

the rows. The size of the wall is bounded by Oð
ffiffiffi

n
p

Þ and so

this step takes Oð
ffiffiffi

n
p

Þ time. Finally, in order to output the

result bits into their proper places we simply grow a line

atop the line created by the increment step. This step has

the same runtime properties as the addition and increment

steps. Therefore, the output step has a runtime of Oð
ffiffiffi

n
p

Þ to
output all rows.

There are four steps each taking Oð
ffiffiffi

n
p

Þ time leading to a

total runtime of Oð
ffiffiffi

n
p

Þ for this algorithm. This upper

bound meets the lower bound presented in Theorem 2 and

the algorithm is therefore optimal.

Choice of
ffiffiffi

n
p

rows of
ffiffiffi

n
p

size The choice for dividing

the bits up into a
ffiffiffi

n
p

�
ffiffiffi

n
p

grid is straightforward.

Imagine that instead of using Oð
ffiffiffi

n
p

Þ bits per row, a much

smaller growing function such as Oðlog nÞ bits per row is

used. Then, each row would finish in Oðlog nÞ time. After

each row finishes, we would have to propagate the carries.

The length of the west wall would no longer be bound by

the slow growing function Oð
ffiffiffi

n
p

Þ but would now be

bound by the much faster growing function Oð n
log n

Þ:
Therefore, there is a distinct trade off between the time

necessary to add each row and the time necessary to

propagate the carry with this scheme. The runtime of this

algorithm can be viewed as the maxðrowsize;westwallsizeÞ:
The best way to minimize this function is to divide the

rows such that we have the same number of rows as

columns, i.e. the smallest partition into the smallest sets.

The best way to partition the bits is therefore into
ffiffiffi

n
p

rows of
ffiffiffi

n
p

bits.

3.2.2 Continuous time

To analyze the continuous run time of our TAC we first

introduce a Lemma 4. This Lemma is essentially Lemma

5.2 of Woods et al. (2012) but slightly generalized and

modified to be a statement about exponentially distributed

random variables rather than a statement specific to the

self-assembly model considered in that paper. To derive

this Lemma, we make use of a well known Chernoff bound

(a) (b) (c)Fig. 4 Step 1: addition

122 A. Keenan et al.

123

for the sum of exponentially distributed random variables

stated in Lemma 3.

Lemma 3 Let X ¼
Pn

i¼1 Xi be a random variable

denoting the sum of n independent exponentially dis-

tributed random variables each with respective rate ki: Let
k ¼ minfkij1� i� ng: Then Pr½X[ð1þ dÞn=k	\ðdþ1

ed
Þn:

Lemma 4 Let t1; . . .; tm denote m random variables

where each ti ¼
Pki

j¼1 ti;j for some positive integer ki; and

the variables ti;j are independent exponentially distributed

random variable each with respective rate ki;j: Let k ¼
maxðk1; . . .kmÞ; k ¼ minfki;jj1� i�m; 1� j� kig; k0 ¼
maxfki;jj1� i�m; 1� j� kig; and T ¼ maxðt1; . . .tmÞ:
Then E½T 	 ¼ Oðkþlogm

k Þ and E½T 	 ¼ Xðkþlogm

k0
Þ:

(a) (b)

(c)

(d)

Fig. 5 The complete tile set. a Tiles involved in bit addition. b Carry propagation tiles. c Tiles involved in incrementation. d Tiles that print the

answer

(a) (b)

Fig. 6 Step 2: increment

Fast arithmetic in algorithmic self-assembly 123

123

Proof First we show that E½T	 ¼ Oðkþlogm
k Þ: For each ti

we know that E½ti	 ¼
Pki

j¼1 ki;j � k=k: Applying Lemma 3

we get that:

Pr½ti [k=kð1þ dÞ	\ dþ 1

ed

� �k

:

Applying the union bound we get the following for all

d� 3:

Pr T [
ð1þ dÞk

k

� �

�m
dþ 1

ed

� �k

�me�kd=2; for all d[3:

Let dm ¼ 2 lnm
k

: By plugging in dm þ x for d in the above

inequality we get that:

Pr T [
ð1þ dm þ xÞk

k

� �

� e�kx=2:

Therefore we know that:

E½T	 � k þ 2 lnm

k
þ
Z 1

x¼0

e�kx=2 ¼ O
k þ logm

k

� �

:

To show that E½T 	 ¼ Xðkþlogm

k0
Þ; first note that

T � max1� i�mfti;1g and that E½max1� i�mfti;1g	 ¼

(a) (b) (c)

(f)(e)(d)

Fig. 7 Step 3: carry propagation and output

124 A. Keenan et al.

123

Xðlogm
k0

Þ; implying that E½T	 ¼ Xðlogm
k0

Þ: Next, observe that

T � ti for each i. Since E½ti	 is at least k=k0 for at least one
choice of i, we therefore get that E½T	 ¼ Xðk=k0Þ: h

Lemma 5 helps us upper bound continuous run times by

stating that if the assembly process is broken up into sep-

arate phases, denoted by a sequence of subassembly way-

points that must be reached, we may simply analyze the

expected time to complete each phase and sum the total for

an upper bound on the total run time.

Lemma 5 Let C ¼ ðT ; S; sÞ be a deterministic tile

assembly system and A0. . .Ar be elements of PRODC such

that A0 ¼ S; Ar is the unique terminal assembly of C; and
A0
 A2
 . . .Ar: Let ti be a random variable denoting the

time for CMC to transition from Ai�1 to the first A0
i such that

Ai
 A0
i for i from 1 to r. Then 1C �

Pr
i¼1 E½ti	:

Proof This lemma follows easily from the fact that a

given open tile position of an assembly is filled at a rate at

least as high as any smaller subassembly. h

To bound the continuous run time of our TAC for any

pair of length n-bit input strings we break the assembly

process up into 4 phases. Let the phases be defined by 5

producible assemblies S ¼ A0;A1;A2;A3;A4 ¼ F; where F

is the final terminal assembly of our TAC. Let ti denote a

random variable representing the time taken to grow from

Ai�1 to the first assembly A0 such that A0 is a superset of

Ai: Note that E½t1	 þ E½t2	 þ E½t3	 þ E½t4	 is an upper

bound for the continuous time of our TAC according to

Lemma 5. We now specify the four phase assemblies and

bound the time to transition between each phase to

achieve a bound on the continuous run time of our TAC

for any input.

Let A1 be the seed assembly plus the attachment of one

layer of tiles above each of the input bits (see Fig. 4c for an

example assembly). Let A2 be assembly A1 with the second

layer of tiles above the input bits placed (see Fig. 6b). Let

A3 be assembly A2 with the added vertical chain of tiles at

the western most edge of the completed assembly, all the

way to the top ending with the final blue output tile.

Finally, let A4 be the final terminal assembly of the system,

which is the assembly A3 with the added third layer of tiles

attached above the input bits.

Time t1 is the maximum of time taken to complete the

attachment of the 1st row of tiles above input bits for each

of the
ffiffiffi

n
p

rows. As each row can begin independently, and

each row grows from right to left, with each tile position

waiting for the previous tile position, each row completes

in time dictated by a random variable which is the sum of
ffiffiffi

n
p

independent exponentially distributed random variables

with rate 1/|T|, where T is the tileset of our adder TAC.

Therefore, according to Lemma 4, we have that t1 ¼
Hð

ffiffiffi

n
p

þ log
ffiffiffi

n
p

Þ ¼ Hð
ffiffiffi

n
p

Þ: The same analysis applies to

get t2 ¼ Hð
ffiffiffi

n
p

Þ: The value t3 is simply the value of the

sum of 4
ffiffiffi

n
p

þ 2 exponentially distributed random vari-

ables and thus has expected value Hð
ffiffiffi

n
p

Þ: Finally, t4 ¼
Hð

ffiffiffi

n
p

Þ by the same analysis given for t1 and t2: Therefore,

by Lemma 5, our TAC has worst case Oð
ffiffiffi

n
p

Þ continuous
run time.

(a)

(b) LSBMSB

MSB of A

MSB of B

LSB of A

LSB of B

Fig. 8 Arrows represent carry origination and propagation direction.

a This schematic represents the previously described O(n) worst case

addition for addends A and B Brun (2007). The least significant and

most significant bits of A and B are denoted by LSB and MSB,

respectively. b The average case Oðlog nÞ construction described in

this paper is shown here. Addends A and B populate the linear

assembly with bit Ai immediately adjacent to Bi: Carry propagation is

done in parallel along the length of the assembly

LSBAn-1 Bn-1 Ak Bk A0 B0S S

LSBAn-1 Bn-1 Ak Bk A0 B0S S

MSB

MSB

Cn

LSBAn-1 Bn-1 Ak Bk A0 B0S SMSB

Cn-1 Ck C0

Fig. 9 Top: output template

displaying addition result C for

Oðlog nÞ average case addition

construction. Bottom: input

template composed of n blocks

of three tiles each, representing

n-bit addends A and B

Fast arithmetic in algorithmic self-assembly 125

123

Fig. 10 Example tile assembly system to compute the sum of 1001

and 1010 using the adder TAC presented in Sect. 4. a The template

with the two 4-bit binary numbers to be summed. b The first step is

the parallel binding of tiles to the S, LSB, and MSB tiles. c Tiles bind
cooperatively to west-face S glues and glues representing bits of B.

The purpose of this step is to propagate bit Bi closer to Ai so that in d
a tile may bind cooperatively, processing information from both Ai

and Bi: e Note that addend-pairs consisting of either both 1s or both 0s

have a tile with a north face glue consisting of either (1,x) or (0,x)

bound to the Ai tile. This glue represents a carry out of either 1 or 0

from the addend-pair. In e–g the carry outs are propagated westward

via tile additions for those addend-pairs where the carry out can be

determined. Otherwise, spacer tiles bind. h Tiles representing bits of

C (the sum of A and B) begin to bind where a carry in is known. i, j As
carry bits propagate through sequences of (0,1) or (1,0) addend pairs,

the final sum is computed

126 A. Keenan et al.

123

4 Addition in average case logarithmic time

We construct an adder TAC that resembles an electronic

carry-skip adder in that the carry-out bit for addend pairs

where each addend in the pair has the same bit value is

generated in a constant number of steps and immediately

propagated. When each addend in a pair of addends does

not have the same bit value, a carry-out cannot be deduced

until the value of the carry-in to the pair of addends is

known. When such addends combinations occur in a con-

tiguous sequence, the carry must ripple through the

sequence from right-to-left, one step at a time as each

position is evaluated. Within these worst-case sequences,

our construction resembles an electronic ripple-carry adder.

We show that using this approach it is possible to construct

an n-bit adder TAC that can perform addition with an

average runtime of Oðlog nÞ and a worst-case runtime of

O(n) (Fig. 8).

Lemma 6 Consider a non-negative integer N generated

uniformly at random from the set f0; 1; . . .; 2n � 1g: The
expected length of the longest substring of contiguous ones

in the binary expansion of N is Oðlog nÞ:

For a detailed discussion of Lemma 6 please see

Schilling (1990).

Theorem 5 For any positive integer n, there exists an n-

bit adder TAC (tile assembly computer) that has worst case

run time O(n) and an average case run time of Oðlog nÞ:

The proof of Theorem 5 follows from the construction

of the adder in Sect. 4.1. Additional detail, including

detailed proofs of the time complexity in both timing

models, can be found in Keenan et al. (2013).

4.1 Construction

We summarize the mechanism of addition presented here

in an abbreviated example. A more detailed example may

be found in Keenan et al. (2013), along with the complete

tile set.

Input Template The input template, or seed, for the

construction of an adder with an Oðlog nÞ average case is

shown in Fig. 9. This input template is composed of n

blocks, each containing three tiles. Within a block, the

easternmost tile is the S labeled tile followed by two tiles

representing Ak and Bk; the kth bits of A and B respectively.

Of these n blocks, the easternmost and westernmost blocks

of the template assembly are unique. Instead of an S tile,

the block furthest east has an LSB-labeled tile which

accompanies the tiles representing the least significant bits

of A and B, A0 and B0: The westernmost block of the

template assembly contains a block labeled MSB instead of

the S block and accompanies the most significant bits of A

and B, An�1 and Bn�1:

Computing carry out bits For clarity, we demonstrate the

mechanism of this adder TAC through an example by

selecting two 4-bit binary numbers A and B such that the

addends Ai and Bi encompass every possible addend

combination. The input template for such an addition is

shown in Fig. 10a where orange tiles represent bits of A

and green tiles represent bits of B. Each block begins the

computation in parallel at each S tile. After six parallel

steps (Fig. 10b–g), all carry out bits, represented by glues

C0 and C1, are determined for addend-pairs where both Ai

and Bi are either both 0 or both 1. For addend pairs Ai and

Bi where one addend is 0 and one addend is 1, the carry out

bit cannot be deduced until a carry out bit has been pro-

duced by the previous addend pair, Ai�1 and Bi�1: By step

seven, a carry bit has been presented to all addend pairs

that are flanked on the east by an addend pair comprised of

either both 0s or both 1s, or that are flanked on the east by

the LSB start tile, since the carry in to this site is always 0

(Fig. 10h). For those addend pairs flanked on the east by a

contiguous sequence of size j pairs consisting of one 1 and

one 0, 2j parallel attachment steps must occur before a

carry bit is presented to the pair.

5 Towards faster addition

Our next result combines the approaches described in

Sects. 4 and 3 in order to achieve both Oðlog nÞ average

case addition and Oð
ffiffiffi

n
p

Þ worst case addition with the same

algorithm (Fig. 11a). This construction resembles the

construction described in Sect. 3 in that the numbers to be

MSB

LSB
(a)

MSB

LSB
(b)

Fig. 11 Arrows represent carry origination and direction of propa-

gation for a Oðlog nÞ average case, Oð ffiffiffi

n
p Þ worst case combined

construction and b Oð
ffiffiffi

n
p

Þ worst case construction

Fast arithmetic in algorithmic self-assembly 127

123

added are divided into sections and values are computed

for both possible carry-in bit values. Additionally, the

construction described here lowers the average case run

time by utilizing the carry-skip mechanism described in

Sect. 4 within each section and between sections.

Theorem 6 There exists a 2-dimensional n-bit adder

TAC with an average run-time of Oðlog nÞ and a worst case
run-time of Oð

ffiffiffi

n
p

Þ:

Given this 2D construction, it is possible to stack mul-

tiple linked instances of this construction into the third

dimension to achieve an analogous optimal result for 3D

addition.

Theorem 7 There exists a 3-dimensional n-bit adder

TAC with an average run-time of Oðlog nÞ and a worst case
run-time of Oð

ffiffiffi

n3
p

Þ:

For a detailed presentation of these results please see

Keenan et al. (2013).

Acknowledgments We would like to thank Ho-Lin Chen and

Damien Woods for helpful discussions regarding Lemma 4 and

Florent Becker for discussions regarding timing models in self-

assembly. We would also like to thank Matt Patitz for helpful dis-

cussions of tile assembly simulation. The authors were supported in

part by National Science Foundation Grant CCF-1117672.

References

Abel Z, Benbernou N, Damian M, Demaine E, Demaine M, Flatland

R, Kominers S, Schweller R (2010) Shape replication through

self-assembly and RNase enzymes. In: SODA 2010: proceedings

of the twenty-first annual ACM-SIAM symposium on discrete

algorithms (Austin, Texas), Society for Industrial and Applied

Mathematics

Adleman L, Cheng Q, Goel A, Huang M-D (2001) Running time and

program size for self-assembled squares. In: Proceedings of the

thirty-third annual ACM symposium on theory of computing

(New York, NY, USA), ACM, pp 740–748

Adleman LM, Cheng Q, Goel A, Huang M-DA, Kempe D,

de Espanés PM, Rothemund Paul WK (2002) Combinatorial

optimization problems in self-assembly. In: Proceedings of the

thirty-fourth annual ACM symposium on theory of computing,

pp 23–32

Becker F, Rapaport I, Rémila E (2006) Self-assembling classes of

shapes with a minimum number of tiles, and in optimal time.

Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), pp 45–56

Brun Y (2007) Arithmetic computation in the tile assembly model:

addition and multiplication. Theor Comput Sci 378:17–31

Bryans N, Chiniforooshan E, Doty D, Kari L, Seki S (2011) The

power of nondeterminism in self-assembly. In: SODA 2011:

proceedings of the 22nd annual ACM-SIAM symposium on

discrete algorithms, SIAM, pp 590–602

Chandran H, Gopalkrishnan N, Reif JH (2009) The tile complexity of

linear assemblies. In: 36th international colloquium on automata,

languages and programming, vol 5555

Cheng Q, Aggarwal G, Goldwasser MH, Kao M-Y, Schweller RT, de

Espanés PM (2005) Complexities for generalized models of self-

assembly. SIAM J Comput 34:1493–1515

Cheng Q, Goel A, de Espanés PM (2004) Optimal self-assembly of

counters at temperature two. In: Proceedings of the first

conference on foundations of nanoscience: self-assembled

architectures and devices

Cook M, Fu Y, Schweller RT (2011) Temperature 1 self-assembly:

deterministic assembly in 3d and probabilistic assembly in 2d.

In: Dana R (ed) Proceedings of the twenty-second annual ACM-

SIAM symposium on discrete algorithms, SODA 2011. SIAM,

pp 570–589

Demaine E, Patitz M, Rogers T, Schweller R, Summers S, Woods D

(2013) The two-handed tile assembly model is not intrinsically

universal. In: Proceedings of the 40th international colloquium

on automata, languages and programming (ICALP 2013)

Demaine ED, Demaine ML, Fekete SP, Patitz MJ, Schweller RT,

Winslow A, Woods D (2014) One tile to rule them all:

simulating any tile assembly system with a single universal tile.

In: ICALP 2014: proceedings of the 41st international collo-

quium on automata, languages and programming

Doty D (2010) Randomized self-assembly for exact shapes. SIAM J

Comput 39(8):3521–3552

Doty D, Patitz MJ, Reishus D, Schweller RT, Summers SM (2010)

Strong fault-tolerance for self-assembly with fuzzy temperature.

In: Proceedings of the 51st annual IEEE symposium on

foundations of computer science (FOCS 2010), pp 417–426

Doty D, Lutz JH, Patitz MJ, Schweller R, Summers SM, Woods D

(2012) The tile assembly model is intrinsically universal. In:

FOCS 2012: proceedings of the 53rd IEEE conference on

foundations of computer science

Fu B, Patitz MJ, Schweller R, Sheline R (2012) Self-assembly with

geometric tiles. In: ICALP 2012: proceedings of the 39th

international colloquium on automata, languages and program-

ming (Warwick, UK)

Kao M-Y, Schweller RT (2008) Randomized self-assembly for

approximate shapes. In: International colloqium on automata,

languages, and programming, lecture notes in computer science,

vol 5125. Springer, pp 370–384

Keenan A, Schweller RT, Sherman M, Zhong X (2013) Fast

arithmetic in algorithmic self-assembly. CoRR arXiv:1303.2416

Mao C, LaBean TH, Relf JH, Seeman NC (2000) Logical compu-

tation using algorithmic self-assembly of DNA triple-crossover

molecules. Nature 407(6803):493–496

Meunier P-E, Patitz MJ, Summers SM, Theyssier G, Winslow A,

Woods D (2014) Intrinsic universality in tile self-assembly

requires cooperation. In: Proceedings of the twenty-fifth annual

ACM-SIAM symposium on discrete algorithms

Schilling M (1990) The longest run of heads. Coll Math J

21(3):196–207

Schweller R, Sherman M (2013) Fuel efficient computation in passive

self-assembly. In: SODA 2013: proceedings of the 24th annual

ACM-SIAM symposium on discrete algorithms, SIAM,

pp 1513–1525

Winfree E (1998) Algorithmic self-assembly of DNA. Ph.D. thesis,

California Institute of Technology, June 1998

Woods D, Chen H-L, Goodfriend S, Dabby N, Winfree E, Yin P

(2012) Efficient active self-assembly of shapes. Manuscript

128 A. Keenan et al.

123

http://arxiv.org/abs/1303.2416

	Fast arithmetic in algorithmic self-assembly
	Abstract
	Introduction
	Definitions
	Basic notation
	Abstract tile assembly model
	Problem description
	Run time models
	Communication problem
	\varOmega (\root d \of {n}) Lower bounds for addition and multiplication

	Optimal 2D addition
	Construction
	Time complexity
	Parallel time
	Continuous time

	Addition in average case logarithmic time
	Construction

	Towards faster addition
	Acknowledgments
	References

