
Probabilistic Autoreductions

Liyu Zhang1 ?, Chen Yuan3, and Haibin Kan2

1 Departmente of Computer Science, University of Texas Rio Grande Valley,
Brownsville, Texas, 78520, USA. liyu.zhang@utrgv.edu

2 School of Physical Mathematical Sciences, Nanyang Technological University,
Singapore. yuan0064@e.ntu.edu.sg

3 Shanghai Key Lab of Intelligent Information Processing, School of Computer
Science, Fudan University, Shanghai 200433, China. hbkan@fudan.edu.cn

Abstract. We consider autoreducibility of complete sets for the two
common types of probabilistic polynomial-time reductions: RP reduc-
tions containing one-sided errors on positive input instances only, and
BPP reductions containing two-sided errors. Specifically, we focus on
the probabilistic counterparts of the deterministic many-one and truth-
table autoreductions. We prove that non-trivial complete sets of NP are
autoreducible for the RP many-one reduction. This extends the result by
Glaßer et al. (2007) that complete sets of NP are autoreducible for the
deterministic many-one reduction. We also prove that complete sets of
classes in the truth-table Polynomial Hierarchy, which is the polynomial
hierarchy defined using the truth-table reduction instead of the general
Turing reduction, are autoreducible with respect to the BPP truth-table
reductions. This generalizes the result by Buhrman et. al. (2000) that
truth-table-complete sets for NP are probabilistically truth-table autore-
ducible to multiple classes of higher complexity although for a weaker
reduction.

Keywords: computational complexity, complete sets, probabilistic polynomial-
time autoreductions, probabilistic many-one and truth-table reductions.

1 Introduction

Let r be a reduction between two languages as defined in computational com-
plexity such as the common many-one and Turing reductions. We say that a
language L is r-autoreducible if L is reducible to itself via the reduction r where
the reduction does not query on the same string as the input. In case that r is
the many-one reduction, we require that r outputs a string different from the
input in order to be an autoreduction. Researchers started investigating on au-
toreducibility as early as 1970’s [18] although much of the work done then was in
the recursive setting. Ambos-Spies [1] translated the notion of autoreducibility
to the polynomial-time setting, and Yao [21] considered autoreducibility in the
probabilistic polynomial-time setting, which he called coherence.

? Research supported in part by NSF grant CCF-1218093

More recently polynomial-time autoreducibilities, which correspond to
polynomial-time reductions, gained attention due to its candidacy as a structural
property that can be used in the “Post’s program for complexity theory” [5] that
aims at finding a structural/computational property that complete sets of two
complexity classes don’t share, hereby separating the two complexity classes.
Autoreducibility is believed to be possibly one of such properties that will lead
to new separation results in the future [3]. Autoreducibility certainly is also an
interesting topic in its own right as knowing whether a language is autoreducible
or not helps us better understand its computational complexity/structure. This
is especially valuable when the language is a complete set for a complexity class
for then autoreducibility of that language informs about the intrinsic computa-
tional properties that all languages in that class might have since they are all
reduced to the complete set [4].

During the past two decades or so many exciting results have been obtained
regarding autoreducibility of complete sets of common complexity classes. In
particular we know now that many-one/Turing complete sets for most natural
complexity classes including P, NP, Polynomial Hierarchy, PSPACE and EXP,
are many-one/Turing autoreducible [2,3,9]. We refer the reader to Glaßer et al.
[8] for a survey. There were also several more recent papers that investigate (non-
)autoreducibility of complete sets for high-complexity classes such as NEXP [16]
or more restricted reductions such as log-space reductions [11]. Most of those
results, however, concern only autoreducibilities under deterministic reductions.

In this paper we consider autoreducibilities under probabilistic reductions
and attempt to see whether and how the probabilistic counterparts of deter-
ministic autoreductions might exhibit different or similar behaviors. Towards
that goal we examined two common types of probabilistic reductions, the RP-
type reductions, which have one-sided errors on positive input instances only,
and BPP-type reductions, which have two-sided errors. We were able to prove
that complete sets for NP are autoreducible for the RP many-one reduction, the
RP-type probabilistic version of the common many-one reduction. This extends
the result by Glaßer et al. [9] that complete sets of NP are autoreducible for
the (deterministic) polynomial-time many-one reduction, to its RP-type prob-
abilistic counterpart. We also proved that all complete sets of classes in the
truth-table Polynomial Hierarchy, which is the polynomial hierarchy defined in
terms of the polynomial-time truth-table reductions instead of the general Tur-
ing reduction, are autoreducible for the BPP truth-table reduction, the BPP-type
probabilistic version of the common polynomial-time truth-table reduction. This
generalizes the result by Buhrman et. al. [3] that truth-table-complete sets for
NP are RP truth-table autoreducible to multiple classes of higher complexity
but for a weaker reduction (BPP reduction instead of RP reduction). Wagner
[20] introduced ΘP-levels to the standard Polynomial Hierarchy, which coincides
with the ∆P-levels in the truth-table Polynomial Hierarchy. Hence, our result
also indicates that all truth-table complete sets in the ΘP-levels are truth-table
autoreducible.

We give necessary definitions and notations in Section 2 and present our
results in sections 3 and 4.

2 Definitions and Notations

We assume familiarity with basic notions in complexity theory and particularly,
common complexity classes such as P, RP, NP, PH and BPP, and polynomial-
time reductions including many-one (≤p

m), truth-table (≤p
tt) and Turing reduc-

tions (≤p
T) [14,13]. Without loss of generality, we use the alphabet Σ = {0, 1}

and all sets we referred to are languages overΣ. We also use Turing machines and
algorithms interchangeably. Following Glaßer et al. [10], we define a non-trivial
set to be a set L where both L and L contain at least two distinct elements.
This allows us present our results in a simple and concise way. All reductions
used in this paper are polynomial-time computable unless otherwise specified. A
language L is complete for a complexity class C for a reduction r if every lan-
guage in C is reducible to L via r. For any algorithm A, we use A(x) to denote
both the execution and output of A on input x, i.e., “A(x) accepts” has the
same meaning as “A(x) = accept”. We use AB(x) for the similar meaning if the
algorithm/Turing machine A has oracle access to a set B.

We consider two types of probabilistic reductions, those with one-sided er-
rors on positive input instances only (RP-type) and those with two-sided er-
rors (BPP-type), that correspond to the common deterministic many-one and
truth-table reductions. The truth-table reduction is often also called non-adaptive
Turing reduction in the literature.

Definition 1 ([19]). Define a language A to be RP (randomized polynomial-
time) many-one reducible (≤rp

m) to a language B, if there exists a probabilistic
polynomial-time algorithm A and a polynomial q such that the following hold for
every x ∈ Σ∗:

– If x ∈ A, then Pr[A(x) ∈ B] ≥ 1
q(|x|) .

– If x 6∈ A, then Pr[A(x) ∈ B] = 0.

Note that we cannot use a fixed polynomial or constant in the definition of
RP many-one reductions for otherwise the reduction will not be transitive.

Definition 2. Define a language A to be BPP (bounded-error probabilistic and
polynomial-time) truth-table reducible (≤bpp

tt) to a language B, if there exists a
probabilistic polynomial-time algorithm A with oracle access to B and a (deter-
ministically) polynomial-time computable function g such that the following hold
for every x ∈ Σ∗:

– On input x, g(x) outputs all queries A will make to B.
– If x ∈ A, then Pr[AB accepts x] ≥ 2

3 .
– If x 6∈ A, then Pr[AB accepts x] ≤ 1

3 .

Note that in the above definition Algorithm A is a Monte-Carlo algorithm
[15,6], i.e., always runs in polynomial time on all inputs regardless of the proba-
bilistic execution. In addition, Algorithm A on any fixed input makes the same
set of queries to B that can be computed from the input deterministically in
polynomial time by the function g. For the latter, we also say that algorithm A
has truth-table oracle access to the language B.

Using the standard probability amplification technique we immediately ob-
tain the following:

Corollary 1. A language A is BPP truth-table reducible to a language B if and
only if there exists a probabilistic polynomial-time algorithm A with truth-table
oracle access to B such that the following hold for every x ∈ Σ∗:

– If x ∈ A, then Pr[AB accepts x] ≥ 1− 1
2|x|

.
– If x 6∈ A, then Pr[AB accepts x] < 1

2|x|
.

With the above definition of the BPP truth-table reduction, the notion of
BPP truth-table hard sets can be defined accordingly, which will be used for the
proof of our results in Section 4.

Definition 3. A language A is BPP truth-table hard for a complexity class C
if every language B ∈ C is BPP truth-table reducible to A.

Again using the standard probability amplification technique we immediately
have the following:

Corollary 2. A language A is BPP truth-table hard for a complexity class C
if and only if for every language B ∈ C, there exists a probabilistic polynomial-
time algorithm A with truth-table oracle access to A that decides B with error
probability 2−n, where n is the input size.

Now that we have defined RP many-one reductions and BPP truth-table
reductions, the definition of the corresponding autoreductions follow straightfor-
wardly.

3 RP Many-one Autoreductions

In this section we extend the result by Glaßer et al. [9] that many-one complete
sets for NP are many-one autoreducible to the RP many-one reduction. Although
the overall proof strategy is similar to that of the previous result, the additional
part that argues why the adapted autoreduction output a correct value with the
desired probability is not trivial at all.

Theorem 1. If L is a non-trivial ≤rp
m -complete set for NP, then L is ≤rp

m -
autoreducible.

Proof. Let L be a nontrivial ≤rp
m -complete set for NP. Then there exist strings

a1 and a2 that belong to L, and b1 and b2 that belong to L. Let N be a non-
deterministic polynomial-time Turing machine that accepts L in time p(n) for
some polynomial p. Without loss of generality, we assume that all computation
paths of N are of length m = p(n) on inputs of length n. Define the following
“left-set” [17] for L:

left(L) = {〈x, u〉 | x ∈ L, and there is an accepting path v of N on x where u ≤ v.}

Here≤ represents the common dictionary order among strings. Clearly left(L) ∈
NP. Hence, there is a RP many-one reduction f from left(L) to L such that a
polynomial q exists, where

– for every 〈x, y〉 ∈ left(L), Pr[f(〈x, y〉) ∈ L] ≥ 1
q(|x|) , and

– for every 〈x, y〉 6∈ left(L), Pr[f(〈x, y〉) ∈ L] = 0.

Now define a probabilistic polynomial-time computable function f ′ as follows:
On input 〈x, y〉, where |x| = n and |y| = p(n), run f on 〈x, y〉 for 2q(n) ln p(n)
times and output x if at least one of the 2q(n) ln p(n) runs of f outputs x, and
output z if otherwise, where z 6= x is one of the outputs by the 2q(n) ln p(n) runs
of f .

Consider the following function g:

1 Input x
2 Let m← p(|x|) and z ← f ′(〈x, 0m〉)
3 If z 6= x then output z
4 If f ′(〈x, 1m〉) = x then
5 If N(x) accepts along the path 1m then
6 Output a string in {a1, a2} − {x}
7 Else
8 Output a string in {b1, b2} − {x}
9 Determine w of length m such that

f ′(〈x,w〉) = x 6= f ′(〈x,w + 1〉) = y
10 If N(x) accepts along w then

output a string in {a1, a2} − {x}
11 Else
12 Run f ′ on 〈x,w + 1〉 again and yield output y′

13 Output y′ if y′ 6= x, or {b1, b2} − {x} otherwise

Line 9 of the above function g can be executed in polynomial time since
f ′ is a polynomial-time computable function and a standard binary search can
be used to determine w as specified. Hence, the function g is polynomial-time
computable. It is also clear that g(x) always outputs a string s 6= x. Now it
remains to show that L≤rp

mL via g.
Assume x 6∈ L. Then for every w ∈ Σm, 〈x,w〉 6∈ left(L) and hence,

f(〈x,w〉) 6∈ L. Therefore, the function g on input x outputs z = f ′(〈x,w〉) 6∈ L
in line 3, or output a string not in L in either line 8 or line 13.

Now assume x ∈ L. Let us define a computation path u (of length m) to be
good if Pr[f(〈x, u〉) = x] ≤ 1/2q(n), and bad otherwise. We immediately observe
the following claim:

Claim 1. For every u ∈ Σm and s = f ′(〈x, u〉),

i. if u is good, then
(a) Pr[s 6= x] ≥ 1

2p(n) , and
(b) 〈x, u〉 ∈ left(L)⇒ Pr[s ∈ L | s 6= x] ≥ 1

r(n) for some polynomial r(n).
ii. if u is bad, then Pr[s = x] > 1− 2

p(n) .

Due to space limit, we omit the proof of Claim 1. Now we consider the
following cases:

Case 1: 0m is good. Let z = f ′(〈x, 0m〉). By i(a) of Claim 1, we have Pr[z 6=
x] ≥ 1

2p(n) . Hence, with probability at least 1
2p(n) the function g outputs z =

f ′(〈x, 0m〉) 6= x in line 3. Furthermore, the probability that z ∈ L in this case is
Pr[z ∈ L | z 6= x] ≥ 1/r(n) for some polynomial r, by i(b) of Claim 1. Therefore,
the function g outputs a string z ∈ L where z 6= x with probability at least

1
2p(n) ·

1
r(n) in case 1.

Case 2: Both 0m and 1m are bad. By ii of Claim 1,

Pr[f ′(〈x, 0m〉) = x] > 1− 2
p(n)

, and

Pr[f ′(〈x, 1m〉) = x] > 1− 2
p(n)

.

Hence, with probability at least (1− 2
p(n))

2 > 1− 4
p(n) the function g reaches

line 5. Since x ∈ L, it follows that 〈x, 1m〉 ∈ left(L) and so 1m is an accepting
path of N on x. Consequently g outputs in line 6 a string in {a1, a2} − {x}.
Therefore, the function g outputs a string in L that does not equal to x with
probability at least 1− 4

p(n) in case 2.
Case 3: 0m is bad and 1m is good. By Claim 1 again, we have

Pr[f ′(〈x, 0m〉) = x] > 1− 2
p(n)

, and

Pr[f ′(〈x, 1m〉) 6= x] ≥ 1
2p(n)

.

Hence, with probability at least (1 − 2
p(n))

1
2p(n) function g reaches line 9.

Note that using a standard binary search to determine a string w ∈ Σm, where
f ′(〈x,w〉) = x and f ′(〈x,w + 1〉) 6= x, requires computing f ′(〈x, u〉) for m − 1
strings u in Σm in addition to 0m and 1m. We denote those strings by u1, . . . ,
um−1 and also let u0 = 0m and um = 1m. Now consider the following statement
Si for each i ∈ {0, 1, . . . ,m}:

Si : ui is bad⇒ f ′(〈x, ui〉) = x.

Assume that the execution of g has reached line 9. Then f ′(〈x, u0〉) = x
and f ′(〈x, um〉) 6= x as computed in line 2 and 4 of function g, respectively.
Hence, both S0 and Sm hold since u0 is bad and um is good. Now for each
i ∈ {1, . . . ,m−1}, let zi = f ′(〈x, ui〉). Then Statement Si fails with the following
probability:

Pr[Si] = Pr[zi 6= x and ui is bad] ≤ Pr[zi 6= x | ui is bad] <
2

p(n)
.

Therefore, all Si’s hold with probability at least (1−2/p(n))p(n)−1 ≥ 1/(2e2).
Now assume that all Si’s hold. Let w be the string determined in line 9 of function
g. If w is an accepting path of N on x, then function g output a string in L−{x}
in line 10. Otherwise, it holds that 〈x,w〉 ∈ left(L) since f ′(〈x,w〉) = x ∈ L,
and hence it must be the case that 〈x,w + 1〉 ∈ left(L). Also, w + 1 must
be good since f ′(〈x,w + 1〉) 6= x. Thus, for the string y′ produced in line 12,
Pr[y′ ∈ L | y′ 6= x] ≥ 1

r(n) for some polynomial r by i(b) of Claim 1. It follows
in this case that the function g outputs a string in L that does not equal x with
probability at least that all the following events occur:

– The function g reaches line 9,
– All statements Si hold for i ∈ {0, 1, 2, . . . ,m}, and
– The function g outputs a correct string in line 10 or line 13 given that the

string w + 1 determined in line 9 is good.

By our previous discussion, the probability referred to above is at least

((1− 2
p(n)

)
1

2p(n)
) · 1

2e2
· ((1− 1

2q(n)
)

1
r(n)

) ≥ 1
16e2p(n)r(n)

.

We have shown in all cases that the function g on an input x ∈ L produces a
string y 6= x where y ∈ L with probability no less than 1

q′(n) for some polynomial
q′(n). This finishes the proof of Theorem 1.

ut

We believe that similar results to Theorem 1 would hold for RP versions of
those reductions such as 1-tt and dtt, as well as for RP many-one complete sets
of all the complexity classes as listed in Glaßer et al. [9] for which determinis-
tic autoreducibilities of complete sets have been proved. However, we have not
considered all the proof details for those sets yet.

4 BPP Truth-table Autoreductions

In this section we consider BPP truth-table reductions. We prove that complete
sets of classes in the truth-table Polynomial Hierarchy (PHtt), which is defined
below, are autoreducible for the BPP truth-table reductions. This generalizes
the result by Buhrman et. al. [3] that truth-table complete sets for NP are
probabilistically (in fact, RP) truth-table autoreducible.

Given a complexity class C, we use Ptt[C] (NPtt[C]) to denote the class of
languages decidable by a (nondeterministic) polynomial-time Turing machine
with truth-table oracle access to a language in C.

Definition 4.
ΣP,tt

0 = ΠP,tt
0 = ∆P,tt

0 = P

For k ≥ 1,
ΣP,tt

k = NPtt[ΣP,tt
k−1],

ΠP,tt
k = coΣP,tt

k = {L | L ∈ ΣP,tt
k }, and

∆P,tt
k = Ptt[ΣP,tt

k−1]

PHtt =
⋃
k≥0

ΣP,tt
k =

⋃
k≥0

ΠP,tt
k

Clearly, PHtt as defined above is the same as the standard PH except thats
truth-table reductions are used instead of the general Turing reductions.

Towards of the goal of proving the main result of this section, we first ob-
serve that Valiant and Vazirani’s result [19] can be extended to relativized CNF
formulas in a straightforward manner.

Definition 5 ([7]). For any language A, a CNF formula relative to A, φA, is
a CNF formula with each clause of the following form

xi1 ∨ xi2 · · · ∨ xiu ∨ yi1 ∨ yi2 ∨ · · · ∨ yiv ,

where xij
’s are literals, and each yij

is a predicate of the form A(w) or A(w)
for some string w consisting of literals, 0’s, 1’s and other predicates of the form
A(w′) or A(w′).

Definition 6. A relativized formula is a formula truth-table relative to a lan-
guage A, φtt[A], if the following conditions hold:

1. φtt[A] is of the form xi1 ∧ xi2 ∧ · · · ∧ xik
∧ TRUE ∧ F , where xi1 , xi2 , . . . ,

xik
are literals and F is a formula relative to A.

2. Every variable appearing inside the predicate A in F does not appear outside
predicate A unless it is one of those xij ’s (1 ≤ j ≤ k) or its negation as
stated in 1.

If a CNF formula φ is one relative to some language A, we also say that φ is
a relativized (CNF) formula. In case φ is truth-table relative to to A, φ is also
called a truth-table relativized (CNF) formula, or simply truth-table formula.

Note that in order to satisfy a truth-table formula xi1 ∧ xi2 ∧ · · · ∧ xik
∧

TRUE ∧ F , all xij
’s must be true. This induces a polynomial-time algorithm

that on a truth-table relativized formula φtt[A], outputs all queries to A that are
needed for evaluating φtt[A] under a satisfying assignment and do not depend on
any particular assignment of φtt[A].

With the above definitions, we say that a relativized formula φA is satisfiable
if φA(a) evaluates to true for some assignment a, where for each occurrence of a
predicate A(w), A(w) = 1 if and only if w ∈ A with the value of w determined by
a and values of other predicates of the form A(u) that appears in w. In addition,
we say that φA has a unique satisfying assignment a if φA(a) evaluates to true
and for every other a′ where φA(a′) is true, a and a′ coincides on variables
appearing outside of the predicate A.

Definition 7. We define the following languages.

– SAT is the set of satisfiable CNF formulas.
– SATA (SATtt[A]) is the set of satisfiable CNF formulas (truth-table) relative

to A.
– USATA (USATtt[A]) is the set of CNF formula (truth-table) relative to A

that have unique satisfying assignments.

Let NPA (NPtt[A]) denote the class of languages decidable by nondetermin-
istic polynomial-time Turing machines with (truth-table) oracle A. Goldsmith
and Joseph [12] proved that for every language A, SATA is complete for NPA via
a many-one reduction that does not use any oracle. A straightforward adaption
of their proof yields a similar result for SATtt[A].

Lemma 1. For any language A, SATtt[A] is complete for NPtt[A] via a many-
one reduction that does not use any oracle.

Theorem 2 ([19]). SAT is reducible to USAT via a RP many-one reduction
r such that r(φ) 6∈ SAT with probability 1 if φ 6∈ SAT, and r(φ) ∈ USAT with
probability at least 1/(4|φ|) otherwise.

Note that the proof of Theorem 2 is relativizable and hence we observe the
following corollary immediately.

Corollary 3. For any language A, SATtt[A] is reducible to USATtt[A] via a
RP many-one reduction r such that r(φ) ∈ SATtt[A] with probability 1 if φ ∈
SATtt[A], and r(φ) ∈ USATtt[A] with probability at least 1/(4|φ|) if φ ∈ SATtt[A].
In addition, the reduction r does not use any oracle or change w for each occur-
rence of A(w) or A(w) in φ.

Buhrman et al. [3] proved that truth-table complete sets for NP are autore-
ducible for the RP truth-table reductions. The key element of the proof is a
probabilistic algorithm that utilizes Theorem 2 and decides the satisfiability of
a CNF formula with oracle access to a truth-table complete set for NP where
a particular query is avoided. With Corollary 3, we are able to prove a result
similar to Buhrman et al.’s for all complete sets in PHtt.

Our proof uses the following languages consisting of relativizable proposi-
tional formulas.

Definition 8. – SAT(1),tt = SAT. For every k ≥ 2, SAT(k),tt = SATtt[SAT(k−1),tt].

– USAT(1),tt = USAT. For every k ≥ 2, USAT(k),tt = USATtt[SAT(k−1),tt].
– F(1) = F(1),tt is the set of CNF propositional formulas. For every k ≥ 2.
– F(k) (F(k),tt) is the set of CNF propositional formulas (truth-table) relative

to SAT(k−1),tt.

Theorem 3. For every k ≥ 1 and every BPP truth-table hard set Lk for ΣP,tt
k ,

there is a probabilistic algorithm Ak that on input 〈φ, y, 0n〉 runs in polynomial
time in |φ| and n, where φ ∈ F(k),tt, and decides the satisfiability of φ with error
probability at most 2−max(n,|φ|). In addition, Ak makes only truth-table queries
to Lk and does not query on y.

Proof. We prove the theorem by induction. Theorem 4.10 in Buhrman et al. [3]
essentially established the proof for the base case k = 1.

Now we prove the induction step. Let L be a BPP truth-table hard set
for ΣP,tt

k where k > 1. Clearly, L is also BPP truth-table hard for ΣP,tt
i for

1 ≤ i ≤ k− 1. Let A1,A1, · · · ,Ak−1 be the probabilistic algorithms that satisfy
the properties as stated in the lemma for 1 ≤ i ≤ k− 1 and use L as the oracle.

Define

T =
{
〈φ, 0i〉

∣∣∣ φ ∈ SAT(k),tt has a satisfying assignment
where the i-th variable is true.

}
Since T ∈ ΣP,tt

k , there is a BPP truth-table reduction g from T to L. Now
let r be the RP many-one reduction of SAT(k),tt to USAT(k),tt as stated in
Corollary 3. Hence, if φ ∈ SAT(k),tt, then r(φ) ∈ USAT(k),tt with probability at
least 1/4|φ|. Also, r(φ) ∈ SAT(k),tt with probability 1 if φ ∈ SAT(k),tt.

Consider the following algorithm B:

1 Input 〈φ, y, 0n〉
2 If φ 6∈ F(k),tt, REJECT
3 ψ := r(φ)
4 Use g to determine the memberships of 〈ψ, 0i〉 in T for

1 ≤ i ≤ m, where m is the number of variables in ψ,
with oracles L− {y} and L ∪ {y}, respectively.

5 Let a0 and a1 be the two assignments induced by the two
sets of memberships of 〈ψ, 0i〉 in T, respectively,
as determined in Line 4.

6 Evaluating ψ(a0) and ψ(a1) by calling Ak−1 on

〈q, y, 0max(|φ|,n)〉 for each membership query SAT(k−1),tt(q).
7 If the above ψ(a0) or ψ(a1) evaluate to true, ACCEPT.
8 REJECT.

We again omit some part of the proof here due to space limit, but just state
that one can show that the algorithm B has the following properties on input
〈φ, y, 0n〉:

– runs in polynomial time in |φ| and n,

– makes nonadaptive queries only to L, none of which is y,
– accepts φ with probability at most ε1 if φ 6∈ SAT(k),tt, and
– accepts φ with probability at least ε2 if φ ∈ SAT(k),tt,
– where ε1 = o(1/max(|φ|, n)) and ε2 = Ω(1/max(|φ|, n)) for sufficiently large
φ and n.

Then we use the standard amplification technique to obtain an algorithm Ak

that consists of multiple runs of B′ and has the error probability as stated in the
lemma.

ut

Corollary 4. Every BPP truth-table-complete set of every class in PHtt is BPP
truth-table autoreducible.

Proof. The corollary is trivially true for ΣP,tt
0 = ΠP,tt

0 = ∆P,tt
0 = P since every

language in P can be decided by a deterministic polynomial-time Turing machine
without any oracle access.

Now let La be a BPP truth-table-complete set for ΣP,tt
k for k ≥ 1. Then La

reduces to SAT(k),tt via a many-one reduction f that does not use any oracle.
Now let Ak be the probabilistic polynomial-time algorithm as stated in Theorem
3 that makes nonadaptive queries to La. Consider the following algorithm Aa:
On input x, compute φ = f(x). Then run Ak on 〈φ, x, 0|x|〉 and accept if and only
if Ak accepts. It is not hard to show that Aa is a BPP truth-table autoreduction
for La. It also follows immediately that a BPP truth-table-complete set Lb for
ΠP,tt

k is BPP truth-table autoreducible since Lb is a BPP truth-table-complete
set for ΣP,tt

k and a set is autoreducible if and only if the complement of the set
is autoreducible for the same reduction.

Now consider a BPP Truth-table-complete set Lc for ∆P,tt
k for k ≥ 1. Then

there exists a deterministic polynomial-time Turing machine M that decides
Lc with truth-table oracle access to SAT(k−1),tt. Let Ak−1 be the probabilis-
tic polynomial-time algorithm as stated in Theorem 3 that makes nonadaptive
queries to Lc. Now consider the following algorithm Ac: On input x, run M on
x and resolve each query on q by running Ak−1 on 〈q, x, 0|x|〉; accept x if and
only if M accepts x. Using the properties that Ak−1 has according to Theorem
3 we can show that Ac is a BPP truth-table autoreduction for Lc.

ut

Wagner [20] defined the ΘP-levels by ΘP
0 = P and ΘP

k+1 = LΣP
k , where L

denotes a log-space oracle Turing machine, and recommended including ΘP-
levels in the standard PH. He also proved for every k ≥ 1 that ΘP

k = Ptt[ΣP
k−1] =

∆P,tt
k . Hence, we immediately have the following corollary.

Corollary 5. For every k ≥ 0, every truth-table complete set for each class in
ΘP

k is probabilistically truth-table autoreducible.

References

1. Ambos-Spies, K.: On the structure of the polynomial time degrees of recursive sets.
Habilitationsschrift, Zur Erlangung der Venia Legendi Für das Fach Informatik an
der Abteilung Informatik der Universität Dortmund (September 1984)

2. Beigel, R., Feigenbaum, J.: On being incoherent without being hard. Computation
Complexity 2(1), 1–17 (1992)

3. Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Using autoreducibil-
ity to separate complexity classes. SIAM Journal on Computing 29(5), 1497–1520
(2000)

4. Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: Proceedings
9th Structure in Complexity Theory. pp. 118–133 (1994)

5. Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. Bulleting of
the EATCS 85, 41–51 (2005)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The
MIT Press, 3e edn. (2009)

7. Fortnow, L.: The role of relativization in complexity theory. Bulletin of the Euro-
pean Association for Theoretical Computer Science 52, 52–229 (1994)

8. Glaßer, C., Ogihara, M., Pavan, A., Selman, A., Zhang, L.: Autoreducibility and
mitoticity. ACM SIGACT News 40(3), 60–76 (2009)

9. Glaßer, C., Ogihara, M., Pavan, A., Selman, A.L., Zhang, L.: Autoreducibility,
mitoticity, and immunity. Journal of Computer and System Sciences 73, 735–754
(2007)

10. Glaßer, C., Pavan, A., Selman, A., Zhang, L.: Splitting NP-complete sets. SIAM
Journal on Computing 37(5), 1517–1535 (2008)

11. Glaßer, C., Witek, M.: Autoreducibility and mitoticity of logspace-complete sets
for NP and other classes. In: Proceedings 39th International Symposium on Mathe-
matical Foundations of Computer Science, part II. pp. 311–323. Budapest, Hungary
(August 2014)

12. Goldsmith, J., Joseph, D.: Three results on the polynomial isomorphism of com-
plete sets. In: Proceedings of the 27th IEEE Symposium on Foundations of Com-
puter Science. pp. 390–397. IEEE, New York (1986)

13. Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer
(2002)

14. Homer, S., Selman, A.: Computability and Complexity Theory. Texts in Computer
Science, Springer, New York, 2e edn. (December 2011)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

16. Nguyen, D., Selman, A.: Non-autoreducible sets for NEXP. In: Proceedings 31st
Symposium on Theoretical Aspects of Computer Science. pp. 590–601. LIPICS,
Lyon, France (March 2014)

17. Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility
of NP sets to sparse sets. SIAM Journal of Computing 20(3), 471–483 (1991)

18. Trakhtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR 192(6), 1224–1227
(1970), translation in Soviet Math. Dokl. 11(3): 814C817, 1790

19. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical
Computer Science 47, 85–93 (1986)

20. Wagner, K.: Bounded query classes. SIAM Journal on Computing 19(5), 833–846
(October 1990)

21. Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd
Annual Symposium on Theory of Computing. pp. 89–94 (1990)

