Characterizations of Student's t-distribution via regressions of order statistics

George P. Yaneva, M. Ahsanullahb

a Mathematics Department, The University of Texas - Pan American, Edinburg, TX, USA
b Management Sciences Department, Rider University, Lawrenceville, NJ, USA

First published on: 12 February 2011
Characterizations of Student’s \(t \)-distribution via regressions of order statistics

George P. Yaneva* and M. Ahsanullahb

\(^a \)Mathematics Department, The University of Texas – Pan American, Edinburg, TX, USA;
\(^b \)Management Sciences Department, Rider University, Lawrenceville, NJ, USA

(Received 12 May 2010; final version received 19 October 2010)

Utilizing regression properties of order statistics, we characterize a family of distributions introduced by Akhundov et al. [New characterizations by properties of midrange and related statistics, Commun. Stat. Theory Methods 33(12) (2004), pp. 3133–3143], which includes the \(t \)-distribution with two degrees of freedom as one of its members. Then we extend this characterization result to \(t \)-distribution with more than two degrees of freedom.

Keywords: order statistics; characterizations; \(t \)-distribution; regression

1. Discussion of the results

The Student’s \(t \)-distribution is widely used in statistical inferences when the population standard deviation is unknown and is substituted by its estimate from the sample. Recently, Student’s \(t \)-distribution was also considered in financial modelling by Ferguson and Platen [1] and as a pedagogical tool by Jones [2]. The probability density function (pdf) of the \(t \)-distribution with \(\nu \) degrees of freedom (\(t_\nu \)-distribution) is given for \(-\infty < x < \infty \) and \(\nu = 1, 2, \ldots \) by

\[
f_\nu(x) = c_\nu \left(1 + \frac{x^2 \nu}{\nu+1}\right)^{-(\nu+1)/2}
\]

where

\[
c_\nu = \frac{\Gamma((\nu + 1)/2)}{\Gamma(\nu/2)\sqrt{\pi \nu}}
\]

and \(\Gamma(x) \) is the gamma function.

The vast majority of characterization results for univariate continuous distributions based on ordered random variables is concentrated to exponential and uniform families. It was not until recently, within the last seven to eight years, that some characterizations were obtained for \(t_\nu \)-distribution with \(\nu = 2 \) and \(\nu = 3 \). In this note, we communicate generalizations of these recent results for \(t_\nu \)-distribution when \(\nu \geq 2 \). Let \(X, X_1, X_2, \ldots, X_n \) for \(n \geq 3 \) be independent random variables with common cumulative distribution function (cdf) \(F(x) \). Assume that \(F(x) \) is absolute continuous with respect to the Lebesgue measure. Let \(X_{1:3} \leq X_{2:3} \leq \cdots \leq X_{n:n} \) be the
corresponding order statistics. Nevzorov et al. [3] (see also [4]) and Akhundov and Nevzorov [5] proved characterizations for the \(t_ν \)-distribution when \(ν = 2 \) and \(ν = 3 \), respectively, assuming, in addition, \(n = 3 \). Here we extend these results to the general case of any \(ν ≥ 2 \) and any \(n ≥ 3 \).

Let \(Q(x) \) be the quantile function of a random variable with cdf \(F(x) \), i.e. \(F(Q(x)) = x \) for \(0 < x < 1 \). Akhundov et al. [6] proved that for \(0 < λ < 1 \), the relation

\[
E[λX_{1,3} + (1 - λ)X_{3,3} \mid X_{2,3} = x] = x
\]

characterizes a family of probability distributions with quantile function

\[
Q_λ(x) = \frac{c(x - λ)}{λ(1 - λ)(1 - x)^{λ - 1}} + d, \quad 0 < x < 1,
\]

where \(0 < c < ∞ \) and \(-∞ < d < ∞ \). Let us call this family of distributions – \(Q \)-family.

Theorem 1 (Q-family) Assume that \(E|X| < ∞ \) and \(n ≥ 3 \) is a positive integer. The random variable \(X \) belongs to the \(Q \)-family if and only if for some \(2 ≤ k ≤ n - 1 \) and some \(0 < λ < 1 \)

\[
λE \left[\frac{1}{k - 1} \sum_{i=1}^{k-1} (X_{k:n} - X_{i:n}) \mid X_{k:n} = x \right] = (1 - λ)E \left[\frac{1}{n - k} \sum_{j=k+1}^{n} (X_{j:n} - X_{k:n}) \mid X_{k:n} = x \right] = x.
\]

Clearly for \(n = 3 \) and \(k = 2 \) Equation (5) reduces to Equation (2). It is also worth mentioning here that, as Balakrishnan and Akhundov [7] reported, the \(Q \)-family, for different values of \(λ \), approximates well a number of common distributions including Tukey lambda, Cauchy, and Gumbel (for maxima).

Notice that \(t_2 \)-distribution belongs to the \(Q \)-family, having quantile function [2]

\[
Q_{1/2}(x) = \frac{2^{1/2}(x - 1/2)}{x^{1/2}(1-x)^{1/2}}, \quad 0 < x < 1.
\]

Nevzorov et al. [3] proved that if \(E|X| < ∞ \) then \(X \) follows \(t_2 \)-distribution if and only if

\[
E[X_{2,3} - X_{1,3} \mid X_{2,3} = x] = E[X_{3,3} - X_{2,3} \mid X_{2,3} = x].
\]

This also follows directly from Equation (2) with \(λ = 1/2 \). Recall that the cdf of \(t_2 \)-distribution [2] is

\[
F_2(x) = \frac{1}{2} \left(1 + \frac{x}{\sqrt{1 + x^2}} \right).
\]

Setting \(λ = 1/2 \) in Equation (4), we obtain the following corollary of Theorem 1.
We generalize this in two directions: (i) characterizing $E_{\nu}(x)$ where $\nu \geq 3$ is a positive integer. Then

$$F(x) = F_2\left(\frac{x - \mu}{\sigma}\right) \quad \text{for} \quad -\infty < \mu < \infty, \quad \sigma > 0,$$

(7)

if and only if for some $2 \leq k \leq n - 1$

$$E\left[\frac{1}{k-1} \sum_{i=1}^{k-1} (X_{k,n} - X_{i,n}) \mid X_{k,n} = x\right] = E\left[\frac{1}{n-k} \sum_{j=k+1}^{n} (X_{j,n} - X_{k,n}) \mid X_{k,n} = x\right].$$

(8)

Relation (8) can be interpreted as follows. Given the value of $X_{k,n}$, the average deviation from $X_{k,n}$ to the observations less than it equals the average deviation from the observations greater than $X_{k,n}$ to it.

Remark 1 (i) Notice that Equation (8) reduces to Equation (6) when $n = 3$ and $k = 2$. (ii) Let us set $n = 2r + 1$ and $k = r + 1$ for an integer $r \geq 1$. Let $M_{2r+1} = X_{r+1:2r+1}$ be the median of the sample $X_1, X_2, \ldots, X_{2r+1}$. Then Equation (8) implies

$$E\left[\sum_{i=1}^{r} (M_{2r+1} - X_{i:2r+1}) \mid M_{2r+1} = x\right] = E\left[\sum_{j=r+2}^{2r+1} (X_{j:2r+1} - M_{2r+1}) \mid M_{2r+1} = x\right].$$

If, in addition, $\bar{X}_{2r+1} = \sum_{i=1}^{2r+1} X_i/(2r + 1)$ is the sample mean, then Equation (8) reduces to Nevzorov et al. [3] t_2-distribution characterization relation

$$E[\bar{X}_{2r+1} \mid M_{2r+1} = x] = x.$$

Let us now turn to the case of t_v-distribution with $v \geq 3$. Akhundov and Nevzorov [5] extended Equation (6) to a characterization of t_3-distribution as follows. If $EX^2 < \infty$ then X follows t_3-distribution if and only if

$$E[(X_{2;3} - X_{1;3})^2 \mid X_{2;3} = x] = E[(X_{3;3} - X_{2;3})^2 \mid X_{2;3} = x].$$

(9)

We generalize this in two directions: (i) characterizing t_v-distribution with $v \geq 3$ and (ii) considering a sample of size $n \geq 3$. The following result holds.

Theorem 2 (t_v-distribution) Assume $EX^2 < \infty$. Let $n \geq 3$ and $v \geq 3$ be positive integers. Then

$$F(x) = F_v\left(\frac{x - \mu}{\sigma}\right) \quad \text{for} \quad -\infty < \mu < \infty, \quad \sigma > 0,$$

(10)

where $F_v(x)$ is the t_v-distribution cdf if and only if for some $2 \leq k \leq n - 1$

$$E\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \left(\frac{v-1}{2} X_{k,n} - (v-2) X_{i,n}\right)^2 \mid X_{k,n} = x\right] = E\left[\frac{1}{n-k} \sum_{j=k+1}^{n} \left((v-2)X_{j,n} - \frac{v-1}{2} X_{k,n}\right)^2 \mid X_{k,n} = x\right].$$

(11)
Remark 2
(i) Notice that if \(n = 3, k = 2, \) and \(\nu = 3 \), then Equation (11) reduces to Equation (9).
(ii) Let us set \(\nu = 3, n = 2r + 1 \) and \(k = r + 1 \) for an integer \(r \geq 1 \). If, as before, \(M_{2r+1} = X_{r+1:2r+1} \) is the median of the sample \(X_1, X_2, \ldots, X_{2r+1} \), then Equation (11) implies the following equality between the sum of squares of the deviations from the sample median

\[
E \left[\sum_{i=1}^{r} (M_{2r+1} - X_{i:2r+1})^2 \mid M_{2r+1} = x \right] = E \left[\sum_{j=r+2}^{2r+1} (X_{j:2r+1} - M_{2r+1})^2 \mid M_{2r+1} = x \right].
\]

2. Proofs

To prove our results, we need the following two lemmas.

Lemma 1 [7] The cdf \(F(x) \) of a random variable \(X \) with quintile function (3) is the only continuous cdf solution of the equation

\[
[F(x)]^{2-\lambda} [1 - F(x)]^{1+\lambda} = c F'(x), \quad c > 0.
\]

Lemma 2 Let \(r \geq 1 \) and \(n \geq 2 \) be integers. Then

\[
\frac{1}{k-1} \sum_{i=1}^{k-1} E[X_{j:n}^r \mid X_{k:n} = x] = \frac{1}{F(x)} \int_{-\infty}^{x} t^{r-1} dF(t), \quad 2 \leq k \leq n;
\]

\[
\frac{1}{n-k} \sum_{j=k+1}^{n} E[X_{j:n}^r \mid X_{k:n} = x] = \frac{1}{1-F(x)} \int_{x}^{\infty} t^{r} dF(t), \quad 1 \leq k \leq n-1.
\]

Proof Using the standard formulas for the conditional density of \(X_{j:n} \) given \(X_{k:n} = x \) \((j < k) \) [8, Theorem 1.1.1], we obtain for \(r \geq 1 \)

\[
\frac{1}{k-1} \sum_{j=1}^{k-1} E[X_{j:n}^r \mid X_{k:n} = x] = \frac{1}{(k-1)} \frac{(k-1)}{[F(x)]^{k-1}} \sum_{j=1}^{k-1} \left(\begin{array}{c} k-2 \hfill \\
\hline \hfill j-1 \end{array} \right) \int_{-\infty}^{x} [F(t)]^{j-1} [F(x) - F(t)]^{k-1-j} t^r dF(t)
\]

\[
= \frac{1}{[F(x)]^{k-1}} \sum_{i=0}^{k-2} \left(\begin{array}{c} k-2 \hfill \\
\hline \hfill i \end{array} \right) \int_{-\infty}^{x} [F(t)]^i [F(x) - F(t)]^{k-2-i} t^r dF(t)
\]

\[
= \frac{1}{F(x)} \int_{-\infty}^{x} t^r dF(t).
\]

This verifies (13). The second relation in the lemma’s statement can be proved similarly.
2.1. **Proof of Theorem 1**

First, we show that Equation (4) implies Equation (3). Applying Lemma 2, for the left-hand side of Equation (5), we obtain

\[
\frac{\lambda}{k-1} \sum_{j=1}^{k-1} E[X_{j:n} \mid X_{k:n} = x] + \frac{1 - \lambda}{n-k} \sum_{j=k+1}^{n} E[X_{j:n} \mid X_{k:n} = x] = \frac{\lambda}{F(x)} \int_{-\infty}^{x} t \, dF(t) + \frac{1 - \lambda}{1 - F(x)} \int_{x}^{\infty} t \, dF(t).
\]

(14)

Further, since \(E|X| < \infty\), we have

\[
\lim_{x \to -\infty} xF(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} x(1 - F(x)) = 0.
\]

(15)

Therefore, integrating by parts, we obtain

\[
\frac{\lambda}{F(x)} \int_{-\infty}^{x} t \, dF(t) + \frac{1 - \lambda}{1 - F(x)} \int_{x}^{\infty} t \, dF(t) = x - \frac{\lambda}{F(x)} \int_{-\infty}^{x} F(t) \, dt + \frac{1 - \lambda}{1 - F(x)} \int_{x}^{\infty} (1 - F(t)) \, dt.
\]

(16)

Thus, from Equations (14) and (16), it follows that Equation (4) is equivalent to

\[
\lambda(1 - F(x)) \int_{-\infty}^{x} F(t) \, dt = (1 - \lambda)F(x) \int_{x}^{\infty} (1 - F(t)) \, dt.
\]

The last equation can be written as

\[
-\frac{\lambda}{1 - \lambda} \int_{-\infty}^{x} F(t) \, dt \frac{d}{dx} \left[\int_{x}^{\infty} (1 - F(t)) \, dt \right] = \int_{x}^{\infty} (1 - F(t)) \, dt \frac{d}{dx} \left[\int_{-\infty}^{x} F(t) \, dt \right],
\]

which leads to

\[
\int_{-\infty}^{x} F(t) \, dt = c \left(\int_{x}^{\infty} (1 - F(t)) \, dt \right)^{-\lambda/(1-\lambda)} \quad c > 0.
\]

Differentiating both sides with respect to \(x\), we obtain

\[
\int_{x}^{\infty} (1 - F(t)) \, dt = c_1 \left(\frac{1}{F(x)} - 1 \right)^{1-\lambda}, \quad c_1 > 0.
\]

Differentiating one more time, we have

\[
[F(x)]^{2-\lambda}[1 - F(x)]^{1+\lambda} = c_2 F'(x), \quad c_2 > 0,
\]

(17)

which is Equation (12). Referring to Lemma 1 we see that Equation (4) implies Equation (3).

To complete the proof of the theorem, it remains to verify that \(F(x)\) with quantile function (3) satisfies Equation (4). Differentiating Equation (3) with respect to \(x\) we obtain

\[
Q_\lambda'(x) = c(1 - x)^{-(1+\lambda)}x^{-(2-\lambda)} \quad c > 0.
\]
On the other hand, since $F(Q_\lambda(x)) = x$, we have $Q_\lambda'(x) = [F'(Q_\lambda(x))]^{-1}$. (Note that the right-hand side is clearly differentiable, and thus so is the left-hand side.) Therefore,

$$(1 - x)^{1+\lambda} x^{-\lambda} = c F'(Q_\lambda(x)),$$

which is equivalent to Equation (17) and thus to Equation (4). This completes the proof.

2.2. Proof of Theorem 2

Notice that Equation (11) can be written as

$$(\nu - 1)x \left[\frac{1}{n-k} \sum_{j=k+1}^{n} E[X_{j:n} \mid X_{k:n} = x] - \frac{1}{k} \sum_{j=1}^{k-1} E[X_{j:n} \mid X_{k:n} = x] \right]$$

$$= (\nu - 2) \left[\frac{1}{n-k} \sum_{j=k+1}^{n} E[X_{j:n}^2 \mid X_{k:n} = x] - \frac{1}{k} \sum_{j=1}^{k-1} E[X_{j:n}^2 \mid X_{k:n} = x] \right].$$

Referring to Lemma 2 with $r = 1$ and $r = 2$, we see that this is equivalent to

$$(\nu - 1)x \left[\frac{1}{1-F(x)} \int_{x}^{\infty} t \, dF(t) - \frac{1}{F(x)} \int_{-\infty}^{x} t \, dF(t) \right]$$

$$= (\nu - 2) \left[\frac{1}{1-F(x)} \int_{x}^{\infty} t^2 \, dF(t) - \frac{1}{F(x)} \int_{-\infty}^{x} t^2 \, dF(t) \right]. \quad (18)$$

Let us assume that $EX = 0$ and $EX^2 = 1$. Hence,

$$\int_{x}^{\infty} t \, dF(t) = -\int_{-\infty}^{x} t \, dF(t) \quad \text{and} \quad \int_{x}^{\infty} t^2 \, dF(t) = 1 - \int_{-\infty}^{x} t^2 \, dF(t)$$

and thus Equation (18) is equivalent to

$$-(\nu - 1)x \left(\frac{1}{1-F(x)} + \frac{1}{F(x)} \right) \int_{-\infty}^{x} t \, dF(t) = \frac{\nu - 2}{1-F(x)} -(\nu - 2) \left(\frac{1}{1-F(x)} + \frac{1}{F(x)} \right) \times \int_{-\infty}^{x} t^2 \, dF(t)$$

Multiplying the above equation by $F(x)[1 - F(x)]$, we find

$$-(\nu - 1)x \int_{-\infty}^{x} t \, dF(t) = (\nu - 2) \left[F(x) - \int_{-\infty}^{x} t^2 \, dF(t) \right]. \quad (19)$$

Differentiating both sides with respect to x, we obtain

$$-(\nu - 1) \int_{-\infty}^{x} t \, dF(t) = f(x)(x^2 + \nu - 2).$$

Since the left-hand side of the above equation is differentiable, we have that $f'(x)$ exists. Differentiating both sides with respect to x, we find

$$\frac{f'(x)}{f(x)} = \frac{x}{\nu - 2 + x^2/(\nu - 2)}.$$
Integrating both sides and making use of the fact that \(f(x) \) is a pdf, we obtain

\[
f(x) = c \left(1 + \frac{x^2}{\nu - 2} \right)^{-\frac{\nu + 1}{2}}
\]

where \(c = \frac{\Gamma((\nu + 1)/2)}{\Gamma(\nu/2) \sqrt{\nu - 2} \pi} \). \((20)\)

It is not difficult to see that if a random variable \(Z \) has the pdf (20), then

\[
X = Z \sqrt{\frac{\nu}{\nu - 2}}
\]

follows \(t_\nu \)-distribution, i.e. its pdf is given by Equation (1). Thus, we have proved that Equation (11) implies Equation (10) when \(\mu = 0 \) and \(\sigma^2 = 1 \). The result now follows in the general case by considering the linear transformation \(Y = \sigma X + \mu \).

To complete the proof, we need to verify that Equation (11) holds when \(X \) has a cdf given by Equation (10). If \(X \) has pdf (1) (i.e. cdf (10)), then we define

\[
Z = X \sqrt{\frac{\nu - 2}{\nu}}
\]

which has pdf (20). Now, it is not difficult to verify that Equation (20) satisfies Equation (19), which in turn is equivalent to Equation (11). The proof is complete.

References